Supporting Information

Luo et al. 10.1073/pnas.0810731105

DNAS

Fig. S1. Objective function is set as maximum PGA production rate of photosynthetic metabolism in the chloroplast of C_3 plants by the Dynamic Flux Balance Analysis (DFBA) method in the different levels of water stress. *F* represents water stress. Green represents the normal condition (F = 1), blue represents the mild (F = 0.8), yellow represents the moderate (F = 0.6), red represents the severe (0.4).

Fig. S2. Objective function is set as maximum PGA production rate of photosynthetic metabolism in the chloroplast of C_3 plants by the DFBA method in the normal (blue) and double concentration of CO_2 (red).

PNAS

Fig. S3. Velocity of five fluxes under water deficit conditions. Objective function is set as maximum PGA production rate of photosynthetic metabolism in the chloroplast of C₃ plants by the DFBA method. *F* represents water stress. Green represents the normal condition (F = 1), blue represents the mild (F = 0.8), yellow represents the moderate (F = 0.6); red represents the severe (0.4).

AS PNAS

Fig. S4. Velocity of five fluxes under the double concentration of CO_2 condition. Objective function is set as maximum PGA production rate of photosynthetic metabolism in the chloroplast of C_3 plants by the DFBA method. Blue represents the normal condition, red represents double concentration of CO_2 .

<

Fig. 55. Velocity of five fluxes under water deficit conditions. Objective function is set as minimum fluctuation of the profile of metabolites concentration of photosynthetic metabolism in the chloroplast of C_3 plants by the M_DFBA method. *F* represents water stress. Green represents the normal condition (*F* = 1), blue represents the mild (*F* = 0.8), yellow represents the moderate (F = 0. 6), red represents the severe (0.4).

DNAS

Fig. S6. Velocity of five fluxes under the double concentration of CO_2 condition. Objective function is set as minimum fluctuation of the profile of metabolites concentration of photosynthetic metabolism in the chloroplast of C_3 plants by the M_DFBA method. Blue represents the normal condition, red represents double concentration of CO_2 .

PNAS

Fig. S7. Objective function is set as minimum fluctuation of the profile of the fluxes of photosynthetic metabolism in the chloroplast of C_3 plants by the M_DFBA method in the different levels of water stress. *F* represents water stress. Green represents the normal condition (*F* = 1), blue represents the mild (*F* = 0.8), yellow represents the moderate (*F* = 0. 6); red represents the severe (0.4).

N A N A

Fig. S8. Objective function is set as minimum fluctuation of the profile of the fluxes of photosynthetic metabolism in the chloroplast of C_3 plants by the M_DFBA method in the normal (blue) and double concentration of CO_2 (red).

DNAS

Fig. S9. Velocity of five fluxes under water deficit conditions. Objective function is set as minimum fluctuation of the profile of the fluxes of photosynthetic metabolism in the chloroplast of C_3 plants by the M_DFBA method. *F* represents water stress. Green represents the normal condition (*F* = 1), blue represents the mild (*F* = 0.8), yellow represents the moderate (*F* = 0.6), red represents the severe (0.4).

DNAS

Fig. S10. Velocity of five fluxes under the double concentration of CO₂ condition. Objective function is set as minimum fluctuation of the profile of the fluxes of photosynthetic metabolism in the chloroplast of C₃ plants by the M_DFBA method. Blue represents the normal condition, red represents double concentration of CO₂.

LAS PNAS

Table S1. Parameters for equations

VAS PNAS

Variable	Note	Value	Reference
x ^{CO2}	CO ₂ concentration in chloroplast	6.3*10 ^{−3} μmol⋅mg ^{−1} Chl	(1)
ζco2	CO_2 diffusion coefficient	150 μ mol·mg ⁻¹ Chl·h ⁻¹	(1)
Out _{co} ,	CO ₂ concentration in cytoplasm	4.45*10 ⁻³ μmol⋅mg ⁻¹ Chl	(2)
X ^{O2}	O_2 concentration in chloroplast	6.8*10 ⁻² μmol⋅mg ⁻¹ Chl	(2)
ζo	O_2 diffusion coefficient	50 μ mol·mg ⁻¹ Chl·h ⁻¹	(3)
Outo	O_2 concentration in cytoplasm	7.2*10 ⁻² μmol⋅mg ⁻¹ Chl	(2)
X ^{Pi}	P _i concentration in chloroplast	$0.2 \ \mu \text{mol} \cdot \text{mg}^{-1} \text{Chl}$	(4)
ζ _{Pi}	P _i diffusion coefficient	$2.4*10^{-3} \mu \text{mol} \cdot \text{mg}^{-1} \text{Chl} \cdot \text{h}^{-1}$	(5)
Out _{Pi}	P _i concentration in cytoplasm	$0.28 \ \mu mol \cdot mg^{-1}$ Chl	(4)
XATP	ATP concentration in chloroplast	$6*10^{-2} \mu mol mg^{-1} Chl$	(4)
X ^{RuBP}	RuBP concentration in chloroplast	$0.145 \mu \text{mol·mg}^{-1}$ Chl	(4)
XNADPH	NADPH concentration in chloroplast	$0.02 \mu \text{mol} \cdot \text{mg}^{-1}$ Chl	(6)
XPGA	PGA concentration in chloroplast	$0.2 \ \mu \text{mol} \cdot \text{mg}^{-1}$ Chl	(4)
X ^{rbcL}	rbcL concentration in chloroplast	$0.068 \mu \text{mol·mg}^{-1}$ Chl	(7)
n	Constant	1.2	
К	Synthesis rate of rbcL protein	0.12 μ mol·mg ⁻¹ Chl·h ⁻¹	(8)
R	Degradation rate of rbcL protein	1 μ mol·mg ⁻¹ Chl ·h ⁻¹	(8)
K _{L1}	Kinetic parameter of Rubisco	80	
K _{L2}	Kinetic parameter of Rubisco	40	

1. Smith EC, Griffiths H (1996) The occurance of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. *Planta* 198:6–16.

2. Luttge U (2002) CO2-concentrating: Consequences in crassulacean acid metabolism. J Exp Bot 53:2131-2142.

3. Goyal A, Tolbert NE (1996) Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts. Proc Natl Acad Sci USA 93:3319–3324.

4. Sharkey TD, et al. (1986) Limitation of photosynthesis by carbon metabolism. II.O₂-insensitive CO₂ uptake results from limitation of triose phosphate utilization. Plant Physiol 81:1123–1129.

5. Rutter JC, Cobb AH (1983) Translocation of orthophosphate and glucose 6-phosphate in Codium fragile chloroplasts. New Phytol 95:559-568.

6. Baysdorfer C, Robinson JM (1985) Metabolic interactions between spinach leaf nitrite reductase and ferredoxin-NADP reductase: Competition for reduced ferredoxin. Plant Physiol 77:318–320.

7. Vu JC, Yelenosky G (1988) Water deficit and associated changes in some photosynthetic parameters in leaves of "Valencia" orange (*Citrus sinensis* L. Osbeck). *Plant Physiol* 88:375–378. 8. Takeuchi A, Yamaguchi T, Hidema J, Strid A, Kumagai T (2002) Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (*Oryza sativa* L.) growing under

supplementary UV-B radiation. Plant Cell Environ 25:695–706.