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Illustration of our main algorithm

In Figure 0, we provide an illustration of the action of AlgorithmCUR, our main low-rank
CUR matrix decomposition algorithm.

Additional data applications

To understand better our CUR matrix decomposition as an exploratory data analysis tool, we
analyzed social science data: voting data from the “Second Rehnquist” U.S. Supreme Court [7]
and U.S. House of Representatives roll call data for the 107th Congress [5, 6]. These are two
datasets to which SVD-based analysis has been applied. The Supreme Court data consists of a
468×9 matrix with entries in {−1,+1} encoding the decisions from about 70% of the cases decided
by the 9 members of the U.S. Supreme Court from 1994 to 2003 [7]. The House data consists of a
{−1, 0,+1} encoding of the “yea,” not voting, and “nay,” voting records on each of the m = 990
roll call votes for each of the n = 444 representatives (including midterm replacements).

When voting data from the Supreme Court [7]—arguably a data set of such a size and about
which too much field specific knowledge is available for random sampling to be appropriate—
is plotted on the top two singular vectors, one clearly observes the characteristic “horseshoe”
pattern of data that has local ordering information [2]. (See Figures 1(a-c).) If we choose k = 2,
which captures 79.0% of the variance in the data, then the justice with the highest leverage
score is Stevens, followed by Thomas and then Scalia, and the pair of judges which captures the
most variance in the data are Rehnquist and Ginsburg, who together capture 65.9% of the data
variance. If k = 1, which has been interpreted as ordering the justices along a partisan axis and
which captures 57.1% of the variance in the data, then the justices with the highest leverage
scores are Kennedy and then O’Connor.

In addition, we can pick 3 actual justices (columns of A, in this case corresponding to, e.g.,
Scalia, Kennedy, and Ginsburg) and then 3 actual cases (rows of A), such that our CUR approx-
imation to A accurately reconstructs 91.0% of the justices’ opinions. We do so by first computing
the low-rank approximation A′ = CUR (or A′ = Ak by truncating the SVD if we are interested
in eigenjustices and eigencases) and then rounding each element of A′ to the nearest element in
{−1,+1}. For comparison, by keeping just the top 2 eigenjustices and eigencases, 92.8% of the
entries of the Supreme Court data matrix are accurately predicted [7].

Congressional roll call data are known to be much more homogenous [5, 6]. (See Figures 1(d)
and 1(e).) For example, if k = 2, which captures 75% of the data variance, then no representative
exhibits a particularly high leverage, e.g., none has a leverage score greater than 2k/n. Indeed, if
k = 2, the highest leverage score for any representative is only 1.38k/n. (A value of greater than
2k/n is of interest since it has been suggested as a rule of thumb to identify outliers [3].) In this
case, uniform random sampling does nearly as well (both in theory and practice) as nonuniform

1



sampling based on the leverage scores, and selecting in a greedy manner representatives with
the highest leverage scores does quite poorly. For example, the projection of the members of
the U.S. House of Representatives onto the span of two representatives chosen by randomly
sampling according to the “leverage score” probabilities is very similar to the plot obtained for
the projection onto the “best pair” of representatives (DeLauro (D-CT) and Crenshaw(R-FL)).
It is also very similar to the plot obtained for any two representatives chosen from as the best
of 10 trials, with each trial performed by sampling uniformly at random. Applying the k-means
clustering algorithm on the two-dimensional data of this panel, we easily separate the Democrats
from the Republicans, with only the four labeled misclassifications. For comparison, k-means on
the full dataset misclassifies two or three representatives.

On the other hand, many other data sets exhibit leverage scores that are extremely nonuniform
(from the point of view of classical regression diagnostics). Two were discussed in the main text.
In addition, consider the full Enron email data. (See Figure 2.) The data matrix is constructed
from the private collection [1] using log-entropy term weighing and consists of m = 65, 033
messages and a total of n = 92, 133 terms. In this case, if, e.g., k = 12, then 6, 029 terms (out
of 92, 133) have a leverage score greater than 2k/n, 981 terms have a leverage score greater than
20k/n, and 29 terms have a leverage score greater than 200k/n! Consequently, uniform sampling
does very poorly, when compared with nonuniform random sampling, but greedily keeping the
highest leverage terms—the greatest outliers—does remarkably well at capturing the variance in
the data. For example, in Figure 2(b), the rank parameter is fixed, and shown is the best of
10 randomized trials. Results shown are for setting k = 12, which captures only 13.3% of the
variance of the data; similar results are obtained for other values of k, but note that, e.g., k = 60
and k = 120 still capture only 22.1% and 27.8%, respectively, of the data variance. Interestingly,
greedily keeping the terms with the highest leverage scores also does well in applications of more
immediate interest to the data analyst. For example, terms with leverage scores greater than,
e.g., ca. 10k/n are less correlated with the main axis of variance of data and thus tend to be
much more interesting and discriminative if one is interested in tasks such as the detection of
time evolving, novel, or outlier topics. (See Figure 2(b) for details.) We saw something similar
in the main text.

Finally, see Figures 3, 4, and 5 for additional figures illustrating the application of Algo-

rithmCUR to other TechTC datasets that cluster well in the low-dimensional space.
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Figure 0: AlgorithmCUR, our main low-rank CUR matrix decomposition algorithm. It takes
as input an m × n real-valued matrix A, a rank parameter k, and an accuracy parameter ǫ. Its
output consists of three matrices, C, U , and R such that the error ‖A − CUR‖

F
is at most (2+ǫ)

times the error of the best rank k approximation.
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Figure 1: Application to social science data: voting data from the “Second Rehnquist” U.S.
Supreme Court [7] and U.S. House of Representatives roll call data for the 107th Congress [5, 6].
(A) Projection of the justices onto the space spanned by the top k = 2 singular justices. The
x-axis corresponds to the top eigenjustice and the y-axis corresponds to the second eigenjustice.
(B) and (C) Statistical leverage scores for each of the judges for the choice of k = 2 and k = 1. (D)
Projection of the members of the U.S. House of Representatives onto the span of two representa-
tives chosen by randomly samping according to the “leverage score” probabilities; shown is the
best of 10 independent trials. The x, y-axes correspond to a coordinate system for the subspace
spanned by the chosen two representatives. (E) Frobenius norm error for randomly sampling
with the “leverage score” probabilities, compared with uniform random sampling and greedily
selecting the representatives with the highest leverage scores. For random sampling, shown is the
best of 10 independent trials.
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Figure 2: Application to Internet data: term-document data matrix derived from the Enron email
corpus [4]. (A) Frobenius norm error for: randomly sampling columns as in AlgorithmCUR;
randomly sampling columns and then rows as in AlgorithmCUR; uniform random sampling;
and greedily selecting the terms with the highest leverage scores. (B) Detection of Outlier Topics:
The full private collection for 2001 is decomposed into 12 submatrices, one for each month. Then,
for each month, the “leverage scores” are used to order terms from highest to lowest. Shown is a
bar chart corresponding to the frequency with which terms in that category appear in the top 50
highest leverage terms. For simplicity six terms are used to define each topic: CA Energy Crisis
(power, california, electricity, utilities, market, customers); India Crisis (dabhol, dpc, india(n),
lender, mseb, maharashtra); Football Season (texas, fantasy, game, ut, orange, longhorns); and
Enron Collapse (partnership, fastow, shares, sec, stock, investor).
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Figure 3: Application of AlgorithmCUR to a TechTC dataset. The matrix consists of
125 documents from TechTC on two topics: US:Florida (id:11346) and Canada:British

Columbia:Nanaimo (id:22294).
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Figure 4: Application of AlgorithmCUR to a TechTC dataset. The matrix consists of 130
documents from TechTC on two topics: US:Texas:Dallas (id:20186) and Canada:British

Columbia:Nanaimo (id:22294).
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Figure 5: Application of AlgorithmCUR to a TechTC dataset. The matrix consists of 127
documents from TechTC on two topics: Canada:British Columbia:Nanaimo (id:22294) and
Asia:Taiwan:Business and Economy (id:25575).
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