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Modeling the integrated cell cycle and DNA damage network 

Model construction 

The integrated model is comprised of sub-models for the cell cycle and the DNA 

damage response. The DNA damage signaling model consists of 72 state variables and 

135 nonzero parameters, while the cell cycle model and its mechanisms of arrest consist 

of 31 state variables and 85 nonzero parameters. Both are ordinary differential equation 

models that describe rates of change of concentrations of proteins and other species 

resulting from chemical reaction processes. Models are available for download from the 

PNAS website (SI MATLAB code). 

The cell cycle model is based on a recently published model by Tyson and colleagues 

(1). In the original model, it was assumed that a variety of molecular species react 

quickly and are at quasi-steady state. Such species are represented by algebraic rather 

than differential equations. In order to incorporate interactions between these species and 

the DNA damage model, we expanded the algebraic relations into dynamical equations. 

In addition, we added protein synthesis and degradation reactions for each species in the 

model to simulate the decrease in protein synthesis caused by cycloheximide treatment, 

an experiment that helped define the restriction point in mammalian cells (2). These 

changes affect the equations governing the dynamics of the model species Wee1, 

Cdc25C, TFE (E2F1), TFB (Mcm), and APC (model species are named according to the 

Tyson model). We ensured that the model’s freely cycling dynamics were unchanged by 

incorporating synthesis and degradation of each cell cycle protein, and by treating 

variables dynamically rather than at steady state. These changes were essential for 
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simulating arrest, as this process requires dynamical interaction with cell cycle proteins, 

and can connect to the cell cycle by reducing protein synthesis rates. 

The Tyson model links cell cycle progression to cell size by setting cyclin synthesis 

rates proportional to an exponentially increasing cell mass (1). While size dependent 

progression through the cell cycle has been shown in yeast, the existence of such a 

mechanism in mammalian cells is not well understood (3). In addition, the regulation of 

cell growth during arrest is poorly understood, and initial simulations of cell cycle arrest 

without incorporating such regulation resulted in growth to unphysical cell sizes (data not 

shown). We therefore define a mitogen parameter, M, representing the intracellular signal 

resulting from extracellular growth factors present in the medium. We model this 

mitogen parameter’s effect as increasing the synthesis rates of CycD and CycE 

transcripts, replacing their dependence on cell size. For cell cycle simulations we set M = 

1.8 unless otherwise indicated, a value that leads to cyclin synthesis rates comparable to 

those attained with the original model. 

The topology of the DNA damage model was derived from the model of Batchelor et 

al., in which oscillations are driven by a combination of two negative feedback loops: the 

core p53-Mdm2 loop and a loop in which the upstream checkpoint kinases are inhibited 

by a p53-inducible gene product, the phosphatase Wip1 [11]. To provide an extensible 

framework for future modeling of the DNA damage network, we incorporated additional 

feedback loops involving p53 [14] in our model (Fig. S1A shows a detailed network 

diagram). With the current parameterization, however, these loops do not significantly 

affect the network’s dynamics. 
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Modeling cyclin knockouts and the restriction point 

To test the model’s ability to match known experimental results for mammalian cells, 

we simulated serum starvation and cycloheximide treatment. To do the former, we 

modeled an immediate, step-like decrease in M from 1.8 to 1 at different times during a 

normal cell cycle (Fig. S1B,B'). These simulations recapitulate the existence of a 

restriction point: if M is decreased within 3 hours of cell division, cells arrest 

immediately in G1, while for later serum removal times, a full cell cycle is completed 

before the cell arrests. Cycloheximide treatment is simulated by a decrease in all protein 

synthesis rates by 20% at various times, leading to similar results (Fig. S2C,C'). For 

cyclin D and E knockout simulations, the synthesis rates and initial conditions of these 

species were set to zero. For M = 2, the cyclin E-/- model still cycles, albeit more slowly 

(Fig. S2D). At this mitogen level, however, the cyclin D-/- model undergoes G1 arrest. 

The cyclin D-/- model only cycles for values of M > 10, consistent with the qualitative 

observation that cyclin D-/- cells have an increased mitogen requirement for proliferation 

(Fig. S2E). 

Modeling cell cycle arrest 

In addition to the cell cycle arrest mechanisms described in detail in the main text, 

other interactions leading to arrest have been described (for example (4, 5)). To ensure 

that the interactions we consider are representative of the space of possible G1 and G2 

arrest mechanisms, we systematically applied arrest by stoichiometric inhibition, 

enzymatic inactivation or transcriptional repression to all species of the cell cycle model.  

Modeling arrest mechanism biochemistry 
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We modeled cell cycle arrest using three distinct biochemical interactions: protein 

inactivation by inhibitor binding, protein inactivation by enzymatic phosphorylation, and 

a decrease in protein level by repression. In the first of these, species  is inhibited by 

the inhibitor  through reactions modeling inhibitor binding formation of the complex , 

as well as the degradation of each constituent species (Equation 1). Any additional 

species-specific terms governing the dynamics of  are kept, and the protein’s specific 

degradation term, denoted by , is assumed to act on both the bound and unbound 

species. We assume the inhibitor is upregulated in proportion to the level of tetrameric 

nuclear p53. 

  (1) 

We model enzymatic phosphorylation by a Michaelis-Menten rate law in which species 

 is modified to an inactive phosphorylated form  by phospho-Chk2 (Equation 2). 

The phosphorylated form is assumed to degrade at the same rate as the unmodified form. 

  (2) 

Finally, protein synthesis inhibition was modeled through a repressive saturation term 

dependent on tetrameric nuclear p53 (Equation 3). This term modulates the protein’s 

usual production rate, denoted by ksi. 

  (3) 
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To vary arrest strength as shown in Figs. 2 and S3, we varied the values of , , and 

 in the equations for the three interactions. The initial value of each was set at the 

limit required for cell cycle arrest, and varied to two orders of magnitude in the direction 

of stronger arrest. 

Analysis of individual arrest mechanisms 

To obtain a comprehensive picture of how cell cycle arrest could be achieved by 

different biochemical implementations and cell cycle targets, we inhibited each cell cycle 

protein individually by binding, by phosphorylation and by transcriptional repression. 

The results of this analysis are shown in Fig. S1F. We find that cyclin profiles can be 

grouped into different types of arrest: mechanism I-like G1 arrest with high G1 cyclins 

and low G2 cylins; mechanism II-like G2 arrest with high G2 cyclins and low G1 cyclins; 

mechanism III-like G2 arrest with low G2 cyclins and high G1 cyclins; M-phase arrest 

characterized by high cyclin B but low cyclins A and E (6); and finally S-phase arrest 

characterized by high cyclin A but low cyclins E and B. All of the resulting arrests fall 

into the three classes of G1 and G2 arrest described in the main text, with the exception 

of interactions leading to arrest in M- or S-phase, which are less prominent in response to 

DSBs. Inhibiting some species by any of the three mechanisms did not lead to arrest; 

these species are not pictured. We find that different choices of biochemical 

implementation frequently lead to qualitatively similar arrest phenotypes, and that 

inhibiting proteins at similar points in the cell cycle (e.g. CycD and CycE; CycA and 

TFE; APC and Cdc20) also leads to similar arrests profiles. Thus, the cell cycle arrest 

mechanisms discussed in the main text, implemented via canonical targets and 
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biochemical interactions, are representative of larger subsets of targets and interactions 

that lead to similar arrest states (e.g. (4, 5)). 

Model simulation details 

Computing cell cycle transitions 

For all freely cycling simulations (Fig. 1B and during each optimization run), the 

G1/S, S/G2, and M/G1 transitions were identified as the first peak times of cyclin E 

(CycE), phosphorylated cyclin B (pB) and APCCdc20A (Cdc20A). However, during cell 

cycle arrest simulations, cyclin trajectories might not peak, or peaks might be 

significantly lower than during the corresponding free cycling simulation. For arrest 

simulations, the G1/S transition was defined as the time at which CycE reached 90% of 

its maximal free cycling value. Similarly M/G1 transitions were defined as times at which 

Cdc20A reached 80% of its maximal value. For arrest simulations, we assume that S 

phase is of fixed duration, equal to the duration in freely cycling cells. 

Simulating DNA damage and measuring arrest steady states 

We modeled the induction of DNA damage as the presence of an input S, 

representing DSBs as well as accessory proteins such as the MRN complex assembled at 

the site of damage. This input was modeled as capable of binding inactive ATM2 dimers 

and catalyzing their phosphorylation and disassociation. At the time of damage tD, S was 

set to a value of 1, while at the time of recovery from arrest tR, S was returned to a value 

of 0. The dynamics of p53, Wip1, and Chk2 cause cyclin levels to oscillate with low 

amplitude during arrest (Fig. 1C-F). In generating Fig. 2, we computed an approximate 

steady state by averaging cyclin levels from 180-200 h after constant application of the 

damage stimulus that causes p53 oscillations. We confirmed that the averages were 
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unchanged compared to the preceding interval from 160-180 h, indicating that steady 

state has been reached. 

Simulating populations of cells (Figs. 4, S4, and S5) 

The distribution of cell ages in a free cycling population is expected to follow the 

distribution given by Equation 8. Thus, for Figs. 4C,D, 5A, and S8D, 500 cells were 

simulated with initial ages (and corresponding initial conditions) sampled from this 

distribution. Damage was induced by applying the damage stimulus to all cells at t = 0. 

To account for damage repair, we implemented a simple model of the stochastic repair of 

DNA damage (7), parameterized using values found in literature, and measured the 

distribution of repair times (Fig. S4A). We modeled the initial damage distribution in 

each cell to be Poisson distributed with a mean of 25 DSBs per Gy (8) and a distribution 

of 80% easy and 20% difficult breaks. Simple breaks were repaired with a half-life of 15 

min, while difficult breaks were repaired with a half-life of 10 h (9, 10). We assumed cell 

cycle reentry occurs when fewer than three breaks remain (7). Fig. S4B shows the 

distribution of repair times from 500 simulations of this stochastic process as computed 

by independent runs of the Gillespie algorithm (11), compared to a Gaussian distribution 

with mean 35 h and standard deviation 10 h. Despite presumed completion of DNA 

repair, p53+/+ cells remain arrested for the duration of our experiments. We model this 

process as sustained activation of p53-dependent arrest mechanisms. 
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Analyzing experimental data for fitting 

Quantifying the fold-change in cyclin levels during arrest 

Two types of flow cytometry measurements were used to train the model to HCT 

p53+/+ and p53-/- data: (i) the fraction of cells in G1, S, and G2, and (ii) the distribution of 

cyclin B and E levels during G2 arrest.  

To extract typical cyclin E and B levels reached during arrest, we fit log-normal 

distributions to the data of Fig. 3 at each time point (Fig. S3). A single log-normal 

distribution was fit to the unimodal G2 cyclin E levels at each time point. G1 cyclin E 

levels were bimodal, possibly indicating that early-G1 and late-G1 subpopulations vary in 

cyclin E levels; for these data, a sum of two log-normal distributions was used. The G2 

cyclin B1 data was fit by a sum of three log-normal distributions.  

We measured the fold change of cyclin E levels after G2 arrest by computing the ratio 

of the mean of the log-normal cyclin E distribution in arrested G2 cells to the mean of the 

high cyclin E distribution in freely cycling G1 cells. Similarly, we computed the fold 

change in cyclin B1 levels from the means of the most populated G2 cyclin B1 peak 

during arrest to the mean of the highest peak in freely cycling G2 cells. In each case, the 

mean intensity of the appropriate isotype control was subtracted from each measurement 

to remove background fluorescence. To capture the levels attained during each cell line’s 

arrest, we performed this analysis at the 48 h time point for HCT p53+/+ cells, and the    

24 h time point for HCT p53-/- cells (as many p53-/- cells have re-entered the cell cycle at 

later times). 
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Quantifying the time spent by HCT cells in G1, S, and G2/M 

To measure the amount of time spent by HCT p53+/+ and p53-/- cells in G1, S, and 

G2/M, we assumed that unirradiated cell populations at 0 h are completely asynchronous, 

and that they maintain a stationary distribution across cell cycle phases. However, 

because cells undergoing mitosis divide into two daughter cells, the observed distribution 

does not directly reflect the amount of time spent by an individual cell in each cell cycle 

phase. Instead, young cells will be over-represented relative to older cells. To properly 

account for this bias towards observing young cells during proliferation, we derived an 

analytical distribution of cell age in a stationary population (similar derivations can be 

found in (12)). 

We considered a model in which cells progress through N states before dividing, and 

all transitions between states occur at the rate a. We represented this process as the linear 

system of ordinary differential equations (ODEs) shown in Equation 4, where the factor 

of 2 arises from a parent cell dividing into two daughters. 

  (4) 

While the total number of cells in such a model diverge, the fractions of cells in each 

phase, computed by normalizing to the total population , approach a steady 

state. We denoted these fractions as state variables . Taking derivatives of  

terms, we defined a new system of nonlinear ODEs (Equation 5). 
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  (5) 

This system was analytically solved at steady state to obtain expressions for each species 

, and resulted in an exponential distribution (Equation 6).  

  (6) 

For the linear transitions in the model of Equation 4, the mean time spent in each state  

is given by , and the total mean cell cycle period is . From these results we 

defined the probability distribution of mean cell age  in terms of the cell population 

. 

  (7) 

In the limit of large , the distributions of ages in each stage become arbitrarily 

narrow around each state’s mean lifetime, representing a deterministic cell spending a 

fixed amount of time in each stage. In this limit, the distribution of cell ages becomes 

continuous in time. We non-dimensionalized this distribution by normalizing the age 
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variable to the total period (i.e. defining ), so that the probability distribution of 

cell ages in the free cycling population can be written as shown in Equation 8. 

  (8) 

From this distribution and the relationships of Equation 8, we solved for the time spent in 

G1, S and G2/M by an individual cell given any observed distribution of cells in these 

phases. 

  (9) 

We obtained the fraction of cells in each cell cycle phase from the measured DNA 

profiles by fitting distributions to a modified Dean-Jett model (13) (see Methods), and 

computing the number of cells in each fit population. The measured population data, and 

its conversion to the time spent in each phase, is reproduced in Figure S3C. 

Fitting the model to data 

Mathematical notation for fitting and sensitivities 

Our model takes the form of a system of coupled ODEs that depends on initial conditions 

, the time t, the current value of all state variables , parameters , and inputs . 

  (10) 
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We define a model output of interest y (i.e., the sum of all cyclin E or B species, active 

cyclin E or B, or Cdc20A) as some linear combination of state variables, formed by 

multiplication of the row vector  with the state vector x. All the outputs we consider in 

this study are listed in Table S1. 

  (11) 

Fitting procedure details 

We performed a local optimization procedure on the cell cycle arrest model. The aim 

of this procedure was to find a set of parameters that would allow our fitted model to 

simultaneously match: (i) the percentage of time spent in each cell cycle phase by 

undamaged, freely cycling HCT p53+/+ and p53-/- cells, (ii) the ratio of steady state cyclin 

E and cyclin B1 arrest levels to their maximal freely cycling levels, (iii) the requirement 

for cyclin E-/- and cyclin D-/- cells to still cycle (14, 15), and (iv) the existence of a 

restriction point after serum starvation and cycloheximide treatment (2). In our fitting 

procedure, all parameters in the cell cycle model and arrest mechanisms I-III were 

allowed to vary. 

For fitting, we treated p53 and Chk2 as constant-level inputs to the cell cycle model 

(see Table S1 for a list of all model inputs and the values taken). p53+/+ cells were 

assumed to arrest with a combination of arrest mechanisms I, II and III, while p53-/- cells 

were assumed to arrest by mechanism II alone. For the cell cycle model to account for 

differences in the length of cell cycle phases between cell lines, we assumed that a basal 

level of p53 activation is responsible for some p21 activation in unirradiated p53+/+ cells. 

This might be due to low levels of damage incurred during the normal cell cycle, or to 
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p53’s involvement in cell cycle checkpoints in undamaged, freely cycling cells. All other 

parameters were shared by both cell lines. Because the total time scale of all simulations 

was left unconstrained by data, this degree of freedom in parameter space was removed 

by assuming a total cell cycle period of 30 h for wild-type (p53+/+) cells. This constraint 

was applied by scaling all parameters that include units of time, and otherwise left all 

trajectories unchanged. 

At each parameterization during fitting, we ran eight independent simulations, shown 

in Table S2. These simulations allow comparison to restriction point and cyclin knockout 

results, as well as the free cycling and steady state data collected for HCT p53+/+ and 

p53-/- cells. All simulations were run to a final time , or until 3 cell cycles were 

completed. We computed various quantities from these simulations, where superscripts 

on these quantities indicate the simulations from which they are computed (Table S2). 

 and  represent the fraction of the cell cycle spent in G1 (2N DNA content) and 

G2/M (4N DNA content). Because a normal cell cycle is split only between G1, S, and 

G2/M, the fraction of time spent in S is completely specified by these two times. The 

 terms represent the ratios of model outputs during arrest to those attained during 

normal cell cycling, and is computed as shown in Equation 12.  

  (12) 

 is the total cell cycle period, and is computed by measuring the time between 

mitoses. Finally, the degree to which steady state is achieved by the final simulation time 

is measured by the norm of the time derivative at this time, . 
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To measure the deviation of these quantities from their experimental values, we 

evaluated an objective function, shown in Equation 13. Each line of the objective 

function represents terms that are computed after the corresponding simulation. 

  (13) 

This objective takes the form of a weighted sum of squared errors, where individual 

terms are scaled so that their contributions are of comparable magnitude. Terms 

containing the function , defined in Equation 14, only penalize for deviation in 

one direction.  

  (14) 

For instance, the term  only contributes to the objective function if the 

period of the cyclin D-/- simulation is longer than that of the normal cell cycle. If 

computing this objective function was impossible at any parameter set during fitting (for 

example, if arrested cells failed to arrest at all), the objective function value was set to an 

arbitrary high number. 
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After fitting, model parameters had changed from the initial parameterization by no 

more than roughly an order of magnitude above and below between the initial model 

parameterization, with no parameters reaching upper or lower bounds (Fig. S5A). 

Efficient timing sensitivities for fitting 

An adjoint method was used to compute the objective function’s parameter 

sensitivities in a computationally efficient manner (16). For this method to be applied, the 

partial derivatives  and  must be computed. Because many terms of the 

objective function involve the times at which the sum of certain species is maximal, we 

solved for the sensitivities to parameters of these times. We define the times of maxima, 

, as times at which the slope of output y is zero, and its second derivative is negative. 

Mathematically, this is written by the two conditions of Equation 15. 

  (15) 

Differentiating Equation 15 and using the chain rule, we derived an expression for the 

sensitivity of the timing of the ith species’ extremum (Equation 16; a similar result is 

found in Equation 18 of Rand et al. (17)).  

  (16) 
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Notably, terms in this equation can be grouped into the form of Equation 17. This form 

permits the application of the adjoint sensitivity method without ever computing , by 

providing the partial derivatives  and . 

  (17) 

Fitted model validation 

We varied individual parameters in our fitted model to identify parameters that, when 

varied individually, remained poorly constrained by our data and fitting procedure. We 

also investigated the fitted model’s ability to predict experimental results, including the 

population-averaged levels of cell cycle species after irradiation and the results of various 

knockout experiments in freely cycling and arrested scenarios. 

Sensitivity analysis of fitted model 

To address whether or not the fitting procedure described above is able to constrain 

the value of individual parameters, we computed the second derivatives of the objective 

function with respect to each parameter by taking finite differences of the adjoint 

sensitivity (described above) and used these values to estimate the curvature of the local 

minimum obtained by fitting. This procedure does not account for any additional 

parameter identification provided by constraints satisfied at the fit (e.g. the requirement 

of cyclin knockout cells to cycle). To map these entries to actual changes in parameters, 

we used the curvature to estimate the change in each parameter required to increase the 

objective function by a value of 0.1 from the minimum (Equation 18).  
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  (18) 

The results of this analysis are shown in Fig. S5B. We find that many parameters, when 

varied individually, strongly affect the objective function value. Eleven parameters are 

sufficiently unconstrained that they have to vary at least twofold to achieve a change in 

objective function value of 0.1 (Table S3). Many of these parameters are association rates 

between cyclins and either p21 or p27; binding of these species might be sufficiently tight 

such that the precise value of this association rate is unconstrained. In addition to the 

parameters pictured in Fig. S5B, this analysis correctly identified five parameters (kifi_p, 

kifib_pp, Jafi, kafi, Jifi) that are infinitely unconstrained. These are all parameters 

affecting TFI, a species that is disconnected from the rest of the cell cycle network in 

Tyson’s mammalian cell parameterization. 

Western blot predictions 

To further validate the model fitted to the cell cycle timing and steady state arrest 

data, we simulated populations of p53+/+ and p53-/- models initially distributed as a freely 

cycling population (see previous section) and computationally predicted the levels of 

different cell cycle proteins at times after the application of damage (Fig. S5C). These 

results were compared with Western blots of total protein levels from HCT p53+/+ and 

p53-/- cell lines (Fig. S4C). We find similar qualitative trends between prediction and 

experiment, although some changes in protein levels are predicted to occur earlier than 
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seen experimentally (e.g. Cyclin A and B dynamics in HCT p53-/- cells; Cdc20 dynamics 

in HCT p53+/+ cells). 

Knockout cell line predictions 

We also validated the model by predicting the results of experiments in which various 

cell cycle proteins might be targeted for silencing or knockout. As described earlier, the 

ability for cyclin D and E knockout cell lines to continue cycling was considered in 

Tyson’s original model and used as part of the fitting process. To test the consequences 

of other deletion experiments, we computationally eliminated each cell cycle protein 

individually for low (M = 2) and high (M = 16) mitogen levels, and compared the 

simulation results to published experimental results obtained in mammalian systems. The 

results are shown in Table S4. We find that the model accurately reproduces most known 

phenotypes, with only two notable exceptions. Cyclin A-/- cells are predicted to cycle at 

both low and high mitogen levels, but experimentally cyclin A is found to be essential. 

This might be due to unmodeled functions of cyclin A in DNA replication, such as a 

basic requirement for initiating replication. The model predicts that Wee1-/- cells can still 

undergo cycling, although Wee1 deletion is embryonic lethal. However, this lethality is 

due to premature mitosis and subsequent cell death, indicating that cells lacking Wee1 

continue cycling, albeit too rapidly. We also tested whether the model predicts normal 

arrest for knockout cell lines that are still able to cycle. All knockout cell lines are 

predicted to maintain normal arrest regulation except for the Cdh1-/- model, which arrests 

transiently by mechanism II but resumes cycling after repair, even in the continued 

presence of mechanisms I and III. This prediction is consistent with evidence that Cdh1-/- 
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cells are able to cycle in the absence of damage, and are defective in maintaining cell 

cycle arrest after IR (18). 
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