
Exploring the DWT used in wfmm, which is the same as that used in the
Matlab Toolbox.

1 Introduction

This document is essentially a blog that explores the DWT approach used in the Matlab toolbox,

which is also implemented in wfmm, the code for implementing the wavelet-based functional

mixed model. This DWT can be applied to signals of any length, i.e. it does not need to be a

power of two. The sampling grid does have to be equally spaced, of course. Given a signal on a

grid of length T , this method uses an overcomplete basis, i.e. we get K > T coefficients. Besides

describing this DWT method, here we also consider two adaptations that can be made to keep

only a total of T coefficients, which can both preserve the orthogonality of the transform under

certain conditions.

2 DWT in Matlab Toolbox

Given a particular signal length T , wavelet basis with filter length 2∗N , boundary condition, and

number of levels of decomposition J , the wavelet toolbox will yield a set of wavelet coefficients

that, in fact, is greater than T . Matlab keeps all coefficients whose basis functions have some

intersection with the real data. The scripts Get DWT.m in Z:/wfmm/Matlab Code/Stage4 can

be used to get the DWT matrix W given T , J , wavelet basis, and boundary condition (periodic,

reflection, or pad with zeros). Matlab uses the boundary condition to augment the data on the

left and right endpoints to compute the wavelet coefficients at each level. Let Kj represent the

number of wavelet coefficients at level j, with j = 0 corresponding to the observed signal, so

K0 = T .

There are a total of Kj = floor(Kj−1/2)+(N−1)+mod2(Kj−1) coefficients at level Kj , where

floor(x) is the greatest integer less than or equal to x. The first N−1 coefficients are affected by

the boundary conditions on the left, and the last (N − 1) + mod2(Kj−1) coefficients are affected

by the boundary conditions on the right, and the middle floor(Kj−1/2) − (N − 1) coefficients

are unaffected by the boundary conditions. From this, we can see that, following Percival and

Walden (2000), it is reasonable to choose an upper bound on J to be floor(KJ−1/2) > N − 1,

to ensure that at least one wavelet coefficient in the middle is unaffected by the boundary

conditions.

As a result, this yields a total of Kw =
∑J

j=1
{floor(Kj−1/2) + (N − 1) + mod2(Kj−1)}

wavelet coefficients and Ks = floor(KJ−1/2) + (N − 1) + mod2(KJ−1) scaling coefficients, for

a total of K = Kw + Ks > T coefficients. Because K > T , this transformation cannot be

orthogonal. That is, the DWT matrix W will be of dimension K × T , so is not square. There

are redundancies in this set of wavelet coefficients.

1

3 Adaptations to keep just T coefficients

There are various approaches one could take to keep just T coefficients, and at least maintain

some hope of having an orthogonal transformation.

3.1 Approach # 1: Remove coefficients at each pyramid step

The first would be to keep only Kw
j = floor(Ks

j−1
/2) wavelet coefficients and Kw

s = ceiling(Ks
j−1

/2

scaling coeffients at each level, following suggestion 3 on page 144 of Percival and Walden (2000).

The expression ceiling(x) is defined to be the smallest integer greater than or equal to x. Of

course, to start Ks
0

= T . This would involve removing (N − 1) + mod2(K
s
j−1

) coefficients near

the boundaries. If m = (N −1)+mod2(K
s
j−1

) is even, the natural thing to do is elimate the first

and last {(N − 1) + mod2(K
s
j−1

)}/2 coeffients. If m is odd, a decision must be made whether

to elimate an extra coefficient at the beginning or end. The boundary conditions will have less

effect on the end for which the extra coefficient is removed. In our implementation, we eliminate

an extra coefficient at the end, so eliminate the first floor(m/2) coefficients at the beginning

and the last ceiling(m/2) coefficients at the end.

This adaptation yields a total of T wavelet coefficients. The T × T DWT matrix W is

computed using Get DWT.m by specifying the option extend = 0 (the default is extend=1,

which yields the extra coefficients as in the Matlab Wavelet toolbox). This yields an orthogonal

transformation only when T = 2M for some integer M , and periodic boundary conditions are

chosen. For the reflection boundary conditions and/or when T is not a power of two, there are

some off-diagonal correlations that prevent the transformation from being orthogonal.

3.2 Approach # 2: Remove coefficients after all pyramid steps are complete

In the alternative described above, the extra coefficients are pruned at each level of the pyramid

algorithm. A second option would be to compute all the coefficients, including the extra ones,

then after all steps of the pyramid algorithm are complete, then keep only floor(Ks + j − 1/2)

wavelet coefficients and ceiling(Ks + j − 1/2) scaling coefficients at each level. This again yields

T coefficients and an orthogonal transform when T = 2M and periodic boundary conditions are

used, but differs in that all of the extended coefficients are used to perform the transform, and

the culling is done in one step at the end.

The DWT matrix for this option can be computed by specifying extend = 10 in Get DWT.m.

The two adaptations for getting down to T coefficients yield different transformations, but their

properties appear quite similar.

3.3 Implications and Recommendations

We assessed the orthogonality of the DWT under various assumptions for the accelerometer data

from Morris, Arroyo, et al. (2005), which had functions on an equally spaced grid of 660. In that

paper, the default Matlab method was used with reflection boundary conditions. We considered

three boundary conditions; relection, periodic, and pad with zeros; and three approaches for

2

keeping boundary coefficients; keep all of them, remove coefficients at each pyramid step, and

remove coefficients after all pyramid steps are complete.

We computed the DWT matrix W for each of these 9 cases. We then computed the ”cor-

relation matrix” R for each, with R = d−1/2Dd−1/2, D = WW ′, and d = diag(D). We only

consider the correlation matrix here because we are not concerned with orthonormality, since

in the wavelet based-functional mixed model for replicated functional data allows different vari-

ances for each wavelet coefficients; thus, the non-unity diagonal elements are not a problem

because they will get properly re-weighted in the analysis. This matrix R is K ×K, where K is

the total number of wavelet and scaling coefficients. The coefficients are ordered such that the

scaling and low frequency wavelet coefficients are given first, followed by the higher frequency

wavelet coefficients in sequence.

These matrices are plotted as heatmaps in Figure 1 (a)-(i), with white corresponding to 1,

black to -1, and 0 to a medium shade of gray. The first row keeps all coefficients, while the

second and third rows reduce to T coefficients using approach #1 and #2, respectively. The

three columns use the reflection, periodic, and pad with zeros boundary conditions, respectively.

If the DWT were orthogonal, these matrices should should be all gray with a white diagonal

down the middle. Of course, all of the diagonal elements are precisely unity, by construction

of R. By cursory glance, these matrices appear to be approximately diagonal. They are not

precisely diagonal for any of these cases, however, and could not be since T = 660 is not a power

of two. Looking carefully, one can see non-zero features in the off-diagonals of some wavelet

coefficients near the boundary. These are more evident when all coefficients are kept than either

method that keeps only T coefficients.

To compare these settings in a more careful way, we computed the eigenvalues of R, {λk, k =

1, . . . ,K} . Under orthogonality, all of these eigenvalues should be unity. We measured the

deviation from orthogonality two ways: first, by counting the number of eigenvalues within a

small tolerance (10−6) of unity, and by computing the mean absolute deviation of the eigenvalues

from unity, i.e. MAD =
∑K

k=1
|λk − 1|. These are given in the plots.

First, consider the number of unit eigenvalues. In all cases, a vast majority of the eigenvalues

were unity, and most of the non-unity eigenvalues were for practical purposes quite close to unity.

Comparing the different approaches, we found that the number of unity eigenvalues was similar

across methods, with the periodic boundary condition tending to yield the most unit eigenvalues

and the reflection yielding the least. Also, in general, the method keeping all coefficients resulted

in a smaller number of unit eigenvalues than the methods keeping only T coefficients.

Comparing the MAD, we see that that keeping all coefficients leads to a larger MAD. This

is mostly due to the fact that by using an overcomplete basis, this approach leads to a singular

matrix with many redundencies. The different boundary conditions had generally comparable

MAD, although again the periodic boundary condition tended to yield smaller MADs, and the

reflection boundary condition led to the largest MADs.

So it appears that the reflection boundary condition used in Morris, Arroyo, et al. (2005)

leads to a transform that is reasonably orthogonal. Considering that the reflection method tends

to have a smaller bias than the periodic method when the endpoints of the curve are not close

or the padding with zeros when they are far from zero, we consider that to be a good option

for that paper. Now in that paper, we did not cut the number of coefficients down to T = 660,

3

(a) Reflection, Keep All Coefficients

MAD=0.149

607/712 unit eigenvalues

200 400 600

100

200

300

400

500

600

700

(b) Periodic, Keep All Coefficients

MAD=0.147

617/712 unit eigenvalues

200 400 600

100

200

300

400

500

600

700

(c) Pad with Zeros, Keep All coefficients

MAD=0.146

620/712 unit eigenvalues

200 400 600

100

200

300

400

500

600

700

(d) Reflection, Keep T coefficients (1)

MAD=0.037

613/660 unit eigenvalues

200 400 600

100

200

300

400

500

600

(e) Periodic, Keep T coefficients (1)

MAD=0.010

625/660 unit eigenvalues

200 400 600

100

200

300

400

500

600

(f) Pad with Zeros, Keep T coefficients (1)

MAD=0.023

619/660 unit eigenvalues

100 200 300 400 500 600

100

200

300

400

500

600

(g) Reflection, Keep T coefficients (2)

MAD=0.021

609/660 unit eigenvalues

200 400 600

100

200

300

400

500

600

(h) Periodic, Keep T coefficients (2)

MAD=0.014

619/660 unit eigenvalues

200 400 600

100

200

300

400

500

600

(i) Pad with Zeros, Keep T coefficients (2)

MAD=0.013

620/660 unit eigenvalues

100 200 300 400 500 600

100

200

300

400

500

600

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

F
igu

re
1:

O
rth

og
o
n
a
lity

o
f
D

W
T

P
lot

of
au

to
correlation

m
atrix

R
corresp

on
d
in

g
to

th
e

D
W

T

u
n
d
er

variou
s

assu
m

p
tion

s
for

th
e

b
ou

n
d
ary

con
d
ition

,
an

d
for

h
ow

m
an

y
co

effi
cien

ts
are

kep
t

an
d

h
ow

th
e

p
y
ram

id
algorith

m
is

im
p
lem

en
ted

.. 4

but kept all K = 712 coefficients that Matlab Wavelet Toolbox would give by default. We could

have had a more orthogonal transform if we reduced the number of wavelet coefficients kept.

However, it is not clear that these small deviations from orthogonality cause any serious

problems for the wavelet-based functional mixed model used in that paper. The method involves

computing the 712 wavelet coefficients for each curve, then fitting Bayesian models for each

wavelet coefficient, then taking the wavelet-space results and projecting them back to the data

space using the IDWT. Since with all of these methods, it is possible to construct a lossless

IDWT, i.e. IDWT (DWT (Y)) = Y , any of these methods should be valid to use. Each one will

have slightly different properties in terms of the form of the Q and S covariance matrices that

it allows by the independence in the wavelet space assumption, but these differences are minor,

and not even noticable except near the endpoints of the data.

3.4 To Be Done:

There are a number of things left to investigate here. First, the exisiting wfmm code can already

compute the DWT and corresponding IDWT using either the ”keep all coefficients” option or

approach #1 for reducing down to T coefficients, but cannot yet handle approach #2. I need

to think through and implement how to construct the IDWT using this assumption. Also, a

more careful assessment of the implications of the non-orthogonality of the DWT when T is not

a power of two needs to be done. I have not seen much in current literature on this issue. While

this does not seem to pose a serious problem for the wfmm, it might in other applications of

wavelets.

It would also be nice to investigate how other code for doing the DWT handle the boundary

conditions (e.g. Splus, wavelab, . . .), and to write code for constructing the W matrix in these

cases so they can be compared with the methods discussed here.

5

