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Figure 1: Summary of missingness in the data. The top curve summarizes the proportion of

daily profiles observed (i.e., nonmissing) as a function of the time of day. The bottom is a

histogram summarizing the proportion of time between 9am and 8pm that is observed for each

profile.
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Figure 2: Posterior mean and 90% pointwise band for child-to-child standard deviation function,

f(t) =
√

Q(t, t)
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Figure 3: Posterior mean and 90% pointwise band for day-to-day standard deviation function,

f(t) =
√

S(t, t)
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Figure 4: Posterior mean and 90% pointwise band for proportion of variability from day-to-day

as function of time, f(t) = S(t, t)/{Q(t, t) + S(t, t)}
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Figure 5: Within-Scale Decorrelation. Heat maps of empirical estimates of the wavelet-space

correlation matrices corresponding to Q∗ and S∗ for wavelets at the three finest scales, j=1,2,

and 3 for the complete case data. Note how these plots are dominated by the diagonal, so it

appears that the DWT did a reasonable job of decorrelation within the wavelet scales for our

example.
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Figure 6: Correlation Matrix for White Noise and AR(1). Plot of empirically estimated corre-

lation matrix for white noise and and AR(1) process with ρ = 0.8, with sample sizes equivalent

to the plots in Figure 5. The purpose of this plot is to serve as a comparison for Figure 5.
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Figure 7: Simulated Data. We randomly generated 200 realizations from a Gaussian process

with mean µ(t) and covariance S(t1, t2) on an equally-spaced grid of length 256 on (0, 1). From

top to bottom, column (a) contains the true mean function µ(t), the true variance function

v(t) = diag(S), and the true autocorrelation surface ρS(t1, t2) = v−1/2Sv−1/2. Columns (b)

and (c) contain the posterior mean estimates of these quantities using wavelet-based methods.

Both assume independence across wavelet coefficients, but (b) allows the wavelet-space variance

components to vary across scale j and location k as in Morris and Carroll (2004), and (c) only

allows them to vary across j, as assumed in Morris, et al. (2003a) and other work involving

wavelet regression. Note that the framework used in (b) is sufficiently flexible to pick up on

the nonstationary features of S, while (c) is not. Specifically, it is able to model the increasing

variance in t, the extra variance near the peak at 0.5, the different degrees of smoothness in

the region (0,0.4) and (0.6,1), and the extra autocorrelation from the peak at 0.5. Also note it

appears to have done a marginally better job of denoising the estimate of the mean function.

These same principles apply to the covariance across random effect functions.
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