Supporting Information

Novel Opioid Peptide Derived Antagonists Containing (2S)-2-Methyl-3-(2,6dimethyl-4-carbamoylphenyl)propanoic Acid [(2S)-Mdcp]

Animesh Ghosh, Jie Luo, Chen Liu, Grazyna Weltrowska, Carole Lemieux, Nga N. Chung, Yixin Lu* and Peter W. Schiller*

Table of Contents

Description of general methods (chemistry) and in vitro bioassays and receptor binding assays	
Purity of compounds 1, 3 and 5 determined by HPLC	S4
HPLC traces of compounds 1, 3 and 5	S5

Corresponding authors:

Phone: +1-514-987-5576. Fax: +1-514-987-5513. E-mail: <u>schillp@ircm.qc.ca</u> (P.W.S.) Phone: +65-6516-1569. Fax: +65-6779-1691. E-mail: <u>chmlyx@nus.edu.sg</u> (Y.L.)

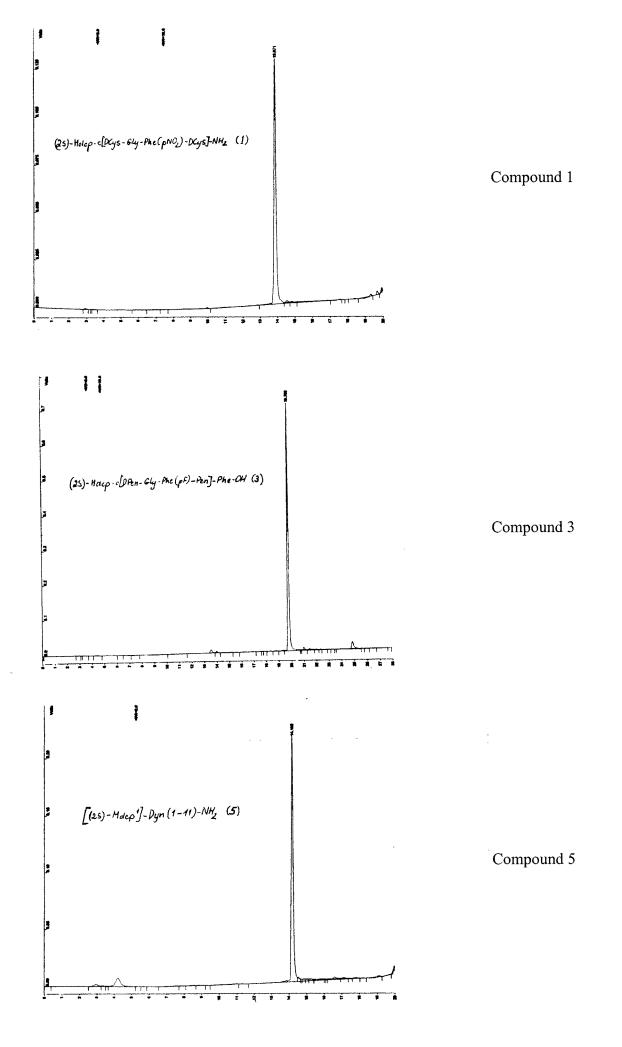
Experimental Section

General Methods. Molecular masses of the compounds were determined by electrospray mass spectrometry on a Hybrid Q-Tof mass spectrometer interfaced to a Mass Lynx 4.0 data system or on a Finnigan/MAT 95XL-T spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian Unity 400 spectrometer or a Bruker Model Advance 300 MHz or DPX-300 NMR spectrometer, and referenced with respect to the residual signals of the solvent. The following abbreviations were used in reporting spectra: s = singlet, d = singletdoublet, t = triplet, q = quartet, m = multiplet. Peptides were purified on a Vydac 218-TP1022 column (22 x 250 mm) with a linear gradient of 20-80% MeOH in 0.1% TFA/H₂O over 30 min at a flow rate of 12 mL/min (peptides 1 and 3) or with a linear gradient of 20-65% MeOH in 0.1% TFA/H₂O over 50 min at a flow rate of 12 mL/min (peptide 5). Analytical reversed-phase HPLC was performed on a Vydac 218-TP54 column (5 x 250 mm) with a linear gradient of 20-80% acetonitrile in 0.1% TFA/H₂O at a flow rate of 1 mL/min. The same column was also used for the determination of the capacity factors K' under the same conditions. Precoated plates (silica gel 60 F₂₅₄, 250 um, Merck Darmstadt, Germany) were used for ascending TLC in the following solvent systems (all v/v): (I) n-BuOH/AcOH/H₂O (4:1:1), (II) n-BuOH/pyridine/AcOH/H₂O (15:10:3:12), (III) CH₃Cl/MeOH/CH₃COOH (85:10:5), (IV) CH₃ COOH/H₂O (7:13).

In Vitro Bioassays and Receptor Binding Assays. The GPI²⁰ and MVD²¹ bioassays were carried out as reported in detail elsewhere.^{22,23} K_e values for antagonists were determined from the ratio of IC₅₀ values obtained with an agonist in the presence and absence of a fixed antagonist concentration.²⁴ μ antagonist K_e values of compounds were determined in the GPI assay against the μ agonist TAPP²⁵ using antagonist concentrations ranging from 10 to 1000 nM. κ antagonist K_e values of compounds were also measured in the GPI assay against the κ agonist U50,488, using antagonist concentrations ranging from 10 to 2000 nM. δ antagonist K_e values of compounds were determined in the MVD assay against the δ agonist DPDPE using antagonist concentrations ranging from 2 to 4000 nM.

Opioid receptor binding studies were performed as described in detail elsewhere.²² Binding affinities for μ and δ receptors were determined by displacing, respectively, [³H]DAMGO (Multiple Peptide Systems, San Diego, CA) and [³H]DSLET (Multiple Peptide Systems) from rat brain membrane binding sites, and κ opioid receptor affinities were measured by displacement of [³H]U69,593 (Amersham) from guinea pig brain membrane binding sites. Incubations were performed for 2h at 0°C with [³H]DAMGO, [³H]DSLET and [³H]U69,593 at respective concentrations of 0.72, 0.78 and 0.80 nM. IC₅₀ values were determined from log-dose displacement curves, and K_i values were calculated from the obtained IC₅₀ values by means of the equation of Cheng and Prusoff,²⁶ using values of 1.3, 2.6 and 2.9 nM for the dissociation constants of [³H]DAMGO, [³H]DSLET, and [³H]U69,593, respectively.

References


(20) Paton, W. D. M. The Action of Morphine and Related Substances on Contraction and on Acetylcholine Output of Coaxially Stimulated Guinea-Pig Ileum. *Br. J. Pharmacol.* **1957**, *12*, 119-127.

- (21) Henderson, G.; Hughes, J.; Kosterlitz, H. W. A New Example of a Morphine Sensitive Neuroeffector Junction: Adrenergic Transmission in the Mouse Vas Deferens. *Br. J. Pharmacol.* **1972**, *46*, 764-766..
- (22) Schiller, P. W.; Lipton, A.; Horrobin, D. F.; Bodanszky, M. Unsulfated C-Terminal 7-Peptide of Cholecystokinin: a New Ligand of the Opiate Receptor. *Biochem. Biophys. Res. Commun.* 1978, 85, 1332-1338.
- (23) DiMaio, J.; Nguyen, T. M.-D.; Lemieux, C.; Schiller, P. W. Synthesis and Pharmacological Characterization in Vitro of Cyclic Enkephalin Analogues: Effect of Conformational Constraints on Opiate Receptor Selectivity. J. Med. Chem. 1982, 25, 1432-1438.
- (24) Kosterlitz, H. W.; Watt, A. J. Kinetic Parameters of Narcotic Agonists and Antagonists with Particular Reference to N-Allylnoroxymorphone (Naloxone). *Br. J. Pharmacol.* **1968**, *33*, 266-276.
- (25) Schiller, P. W.; Nguyen, T. M.-D.; Chung, N. N.; Lemieux, C. Dermorphin Analogues Carrying an Increased Positive Net Charge in Their "Message" Domain Display Extremely High μ Opioid Receptor Selectivity. J. Med. Chem. 1989, 32, 698-703.
- (26) Cheng, Y.; Prusoff, W. H. Relationship Between the Inhibition Constant (K_I) and the Concentration of Inhibitor which Causes 50 Per Cent Inhibition (I₅₀) of an Enzymatic Reaction. *Biochem. Pharmmacol.* **1973**, *22*, 3099-3108.

Purity of target compounds 1, 3 and 5

Analytical reversed-phase HPLC was performed on a Varian 9010/9050 system using a Vydac 218-TP54 column (5 x 250 mm) with a linear gradient of 20-80% acetonitrile in 0.1% TFA/H₂O at a flow rate of 1 mL/min (λ = 254 nm).

Compound		K	Purity
1	(2S)-Mdcp-c[D-Cys-Gly-Phe(pNO ₂)-D-Cys]NH ₂	3.75	> 98%
3	(2S)-Mdcp-c[D-Pen-Gly-Phe(pF)-Pen]-Phe-OH	5.83	> 98%
5	$[(2S)-Mdcp^1]$ Dyn A(1-11)-NH ₂	3.78	>95%

S5