
Supplemental Material
Lander et al., "Cell Lineages and the Logic of Proliferative
Control"

1. ODE model of an unbranched lineage
The system of equations in Figure 2b is derived from the principle that the rate of increase of each cell of type "n" has two components, creation by
differentiation of a cell of type n-1, and self-replication. The rate of the former will be twice 1 - pn-1, the factor of two coming from the fact that cell type

n-1 produces two cells with every division. The rate of the latter will be twice pn minus 1; the factor two again reflects the fact that cells produce two cells

with each division, while the subtraction of 1 reflects the fact that whenever a cell divides to produce two new cells, one must deduct one for the parental
cell that no longer exists.
For cell type zero, the term representing production from a previous lineage stage is omitted. For the cell type at the end of the lineage, which does not
divide, the term for replication is omitted. In addition, a probabilistic rate of death is added to the last equation, to capture the fact that the terminal cell
often has a limited lifespan. Death of other cell types is not considered here, but could could easily be added to the equations. In addition, at death term
that is age-structured, rather than probabilistic, could be used.
In generating simulations of the dynamic behaviors of lineages, it is convenient to perform some rescaling and non-dimensionalize to reduce the numbers
of free parameters. For example, it is useful to define a unit of time t = t v1; a parameter z = v0 ê v1is used to eliminate v0;and a parameter d = d ê v1is also

defined. Here is how this works out for a three stage lineage.

8c0'@tD ã H2 p0 - 1L v0 c0@tD,
c1'@tD ã 2 H1 - p0L v0 c0@tD + H2 p1 - 1L v1 c1@tD,
c2'@tD ã 2 H1 - p1L v1 c1@tD - d c2@tD< ê.

9v0 Ø v1 z, d Ø d v1, cn_'@tD Ø v1 cn'@tD, cn_@tD Ø cn@tD= êê TableForm

v1 c0£@tD ã z H-1 + 2 p0L v1 c0@tD
v1 c1£@tD ã 2 z H1 - p0L v1 c0@tD + H-1 + 2 p1L v1 c1@tD
v1 c2£@tD ã 2 H1 - p1L v1 c1@tD - d v1 c2@tD

v1 can be cancelled from all sides of this. The remaining parameters are therefore p0 , p1, d and z.

2. Steady state solution in the absence of feedback
The system in Fig. 2 b may be solved in the steady state by setting all time rates to zero.

From the first equation one gets c0 ã 0 or v0 ã 0 or p0 ã 0.5. The only solution of interest is p0 ã 0.5, which in turn implies that c0 is undeter-

mined, i.e. arbitrary
From the last equation one gets

cn ä -
2 H-1 + p2L v2 c-1+n

d
From every other equation one gets

" j>0, j<n , cn- j ä
2 I-1 + pn- j-1M vn- j-1 cn- j-1

I-1 + 2 pn- jM vn- j
Putting these together implies

cn ä
c0 v0

d
 ‰
i=1

n-1 2 I1 - piM
1 - 2 pi

3. Steady state solution for a two stage lineage with feedback
In this study, feedback is represented by multiplying p- and v- parameters by Hill functions of the form

1

1 + Ia cfinal@tDMn

where cfinal@tD represents the amount of terminal stage cells, and a is a parameter. For a two stage lineage, with just a stem cell and a terminal stage cell,

we thus may write, in the steady state:

twostage =

80 ã H-1 + 2 p0L v0 c0@tD, 0 ã 2 H1 - p0L v0 c0@tD - d c1@tD< ê. :p0 Ø
p0

1 + Hj c1@tDLn
, v0 Ø

v0

1 + Hk c1@tDLn
>

:0 ã

v0 c0@tD J-1 +
2 p0

1+Hj c1@tDLn N

1 + Hk c1@tDLn
, 0 ã -d c1@tD +

2 v0 c0@tD J1 -
p0

1+Hj c1@tDLn N

1 + Hk c1@tDLn
>

If j≠0, and n=1, we may solve this as follows.

Solve@twostage ê. n Ø 1, 8c0@tD, c1@tD<D êê Simplify

:8c0@tD Ø 0, c1@tD Ø 0<, :c0@tD Ø
d H-1 + 2 p0L Hj - k + 2 k p0L

j2 v0
, c1@tD Ø

-1 + 2 p0

j
>>

Notice there are two solutions, the first being the trivial solution in which both cell types have a level of zero. This is the state reached iff p0 < 0.5

If j≠0 and n=2, the solution is:

Solve@twostage ê. n Ø 2, 8c0@tD, c1@tD<D êê Simplify

:8c0@tD Ø 0, c1@tD Ø 0<, :c0@tD Ø
d -1 + 2 p0 I-j2 + k2 - 2 k2 p0M

j3 v0
, c1@tD Ø -

-1 + 2 p0

j
>,

:c0@tD Ø
d -1 + 2 p0 Ij2 - k2 + 2 k2 p0M

j3 v0
, c1@tD Ø

-1 + 2 p0

j
>>

Of these solutions, the second may be ignored as it gives values of c1that are always negative.

If j≠0 and n=1/2, the solution is:

Solve@twostage ê. n Ø 1ê2, 8c0@tD, c1@tD<D êê Simplify

:8c0@tD Ø 0, c1@tD Ø 0<, :c0@tD Ø

d 1 +
k H1-2 p0L2

j
H1 - 2 p0L2

j v0
, c1@tD Ø

H1 - 2 p0L2
j

>>

If j=0, then p0must be 0.5 and c0becomes arbitrary (as it does when there is no feeback). In this case, we may drop the first equation, and solve the second

one in terms of c0. Here we look at the case where n=1

twostage@@2DD

0 ã -d c1@tD +

2 v0 c0@tD J1 -
p0

1+Hj c1@tDLn N

1 + Hk c1@tDLn

Supplemental Material, Lander et al.

Assuming@d > 0 && v0 > 0 && c0 > 0 && k ¥ 0 && c1@tD ¥ 0,
Simplify@Solve@twostage@@2DD ê. 8j Ø 0, p0 Ø 1ê2, n Ø 1, c0@tD Ø c0<, c1@tDDDD

::c1@tD Ø -
d + d Hd + 4 k v0 c0L

2 d k
>, :c1@tD Ø

-1 + 1 +
4 k v0 c0

d

2 k
>>

Of these solutions it is easy to see that only the second one can be positive-valued. Below is the solution when n=2

Assuming@d > 0 && v0 > 0 && c0 > 0 && k ¥ 0 && c1@tD ¥ 0,
Simplify@Solve@twostage@@2DD ê. 8j Ø 0, p0 Ø 1ê2, n Ø 2, c0@tD Ø c0<, c1@tDDDD

::c1@tD Ø

-2 31ê3 d2 k2 + 21ê3 K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
2ê3

62ê3 d k2 K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
1ê3 >,

:c1@tD Ø

2 J3 Â + 3 N d2 k2 + Â 21ê3 31ê6 JÂ + 3 N K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
2ê3

2 22ê3 35ê6 d k2 K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
1ê3 >,

:c1@tD Ø

2 J-3 Â + 3 N d2 k2 + 21ê3 31ê6 J-1 - Â 3 N K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
2ê3

2 22ê3 35ê6 d k2 K9 d2 k4 v0 c0 + 12 d6 k6 + 81 d4 k8 v0
2 c0

2 O
1ê3 >>

4. Steady state solution for a three - stage lineage with feedback (Fig. S1-S3)
threestage =
80 ã H2 p0 - 1L v0 c0@tD,
0 ã 2 H1 - p0L v0 c0@tD + H2 p1 - 1L v1 c1@tD,
0 ã 2 H1 - p1L v1 c1@tD - d c2@tD< ê.

:p0 Ø
p0

1 + Hj c2@tDLn
, v0 Ø

v0

1 + Hk c2@tDLn
, p1 Ø

p1

1 + Hg c2@tDLn
, v1 Ø

v1

1 + Hh c2@tDLn
>

:0 ã

v0 c0@tD J-1 +
2 p0

1+Hj c2@tDLn N

1 + Hk c2@tDLn
,

0 ã

v1 c1@tD J-1 +
2 p1

1+Hg c2@tDLn N

1 + Hh c2@tDLn
+

2 v0 c0@tD J1 -
p0

1+Hj c2@tDLn N

1 + Hk c2@tDLn
, 0 ã -d c2@tD +

2 v1 c1@tD J1 -
p1

1+Hg c2@tDLn N

1 + Hh c2@tDLn
>

If j ≠ 0, and n = 1, we may solve this as follows.

Solve@threestage ê. n Ø 1, 8c0@tD, c1@tD, c2@tD<D êê FullSimplify

:8c0@tD Ø 0, c1@tD Ø 0, c2@tD Ø 0<, :c0@tD Ø 0, c1@tD Ø
d H-1 + 2 p1L Hg - h + 2 h p1L

g2 v1
, c2@tD Ø

-1 + 2 p1

g
>,

:c0@tD Ø
d H-1 + 2 p0L Hj - k + 2 k p0L Hg - j - 2 g p0 + 2 j p1L

2 j2 Hg - j - 2 g p0 + j p1L v0
,

c1@tD Ø
d H-1 + 2 p0L H-g + j + 2 g p0L H-h + j + 2 h p0L

2 j2 H-g + j + 2 g p0 - j p1L v1
, c2@tD Ø

-1 + 2 p0

j
>>

Supplemental Material, Lander et al.

:8c0@tD Ø 0, c1@tD Ø 0, c2@tD Ø 0<, :c0@tD Ø 0, c1@tD Ø
d H-1 + 2 p1L Hg - h + 2 h p1L

g2 v1
, c2@tD Ø

-1 + 2 p1

g
>,

:c0@tD Ø
d H-1 + 2 p0L Hj - k + 2 k p0L Hg - j - 2 g p0 + 2 j p1L

2 j2 Hg - j - 2 g p0 + j p1L v0
,

c1@tD Ø
d H-1 + 2 p0L H-g + j + 2 g p0L H-h + j + 2 h p0L

2 j2 H-g + j + 2 g p0 - j p1L v1
, c2@tD Ø

-1 + 2 p0

j
>>

As before, the trivial steady state Hall zerosL is reached for p0 < 0.5.

Notice that are now two possible non - trivial steady state solutions for c2,

either
2 p0 - 1

j
 or

2 p1 - 1

g
. The latter solution is accompanied by c0 going to zero. Thus,

for some parameter values, c0 behaves like a stem cell and c1 like a transit amplifying cell,
and for other parameter values, c0 is extinguished and c1 takes on the behavior of a stem cell.

Which steady state is reached depends on whether
2 p1 - 1

g
>

2 p0 - 1

j
. If this is true, the steady state with c2 =

2 p1 - 1

g
is reached.

Note that, since p0 > 0.5, this condition will never be met for cases where p1 < 0.5. So the ability of c1 to take over as the stem cell depends upon p1 > 0.5.

If j = 0, or n > 1, we may use the same approach to obtain steady state solutions,
although the expressions for them become more complicated. Here let ' s just look at the case,
discussed in the main text, where there is feedback on p1 and v1, but not on p0 or v0.

To make the solution simpler, let us make some substitions to nondimensionalize :

Let c1 = c1@tD ê c0; c2 = c2@tD ê c0; z = v0 ê v1; g = g c0; h = h c0; d = d ê v1
threestage@@82, 3<DD ê. 8n Ø 1, j Ø 0, k Ø 0, p0 Ø 1ê2, c0@tD Ø c0,

c1@tD Ø c1 c0, c2@tD Ø c2 c0, v0 Ø v1 z, g Ø gê c0, h Ø hê c0, d Ø d v1< êê Simplify

: z +
c1 J-1 +

2 p1
1+c2 g

N
1 + c2 h

v1 c0 ã 0, -c2 d +
2 c1 I1 -

p1
1+c2 g

M
1 + c2 h

v1 c0 ã 0>

Solve@%, 8 c1, c2<D êê FullSimplify

::c1 Ø
1

2 g2 d
 d2 h + 2 g2 z2 h + g d H-d + z hL + 4 d2 h p1

2 + Hd h - g Hd + z hLL Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 +

2 d p1 g Hd + z hL - h 2 d + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 ,

c2 Ø -
d - 2 g z - 2 d p1 + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1

2 g d
>, :c1 Ø

1

2 g2 d
 d2 h + 2 g2 z2 h + g d H-d + z hL + 4 d2 h p1

2 + H-d h + g Hd + z hLL Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 +

2 d p1 g Hd + z hL + h -2 d + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 ,

c2 Ø
-d + 2 g z + 2 d p1 + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1

2 g d
>>

Notice that h does not enter into the steady state for c2, because, as was shown in the case without feedback, v1does not affect the steady state for c2.

Supplemental Material, Lander et al.

We may re -

write the two solutions for c2 as
-d + 2 g z + 2 d p1 - Hd + 2 g zL2 + 4 d2 H-1 + p1L p1

2 g d
 and

-d + 2 g z + 2 d p1 + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1
2 g d

The expression inside the radical may be re - written as Hd H2 p1 - 1L + 2 g zL2 +
8 g d z H1 - p1L. The expression outside the radical may be re - written as d H2 p1 - 1L + 2 g z. Given that 1 - p1 > 0,

then the square root of the expression inside the radical is always greater than Hd H2 p1 - 1L + 2 g zL2 . Therefore, if d H2 p1 - 1L + 2 g z > 0,
the first solution leads to a negative c2 because the subtraction from a positive number of a larger positive number will lead to a negative one. If d H2 p1 - 1L +

2 g z < 0, then the first solution leads to negative c2 because a negative
number if added to a negative number. Accordingly, the second solution is the correct one.

sol1 = :c1 Ø

1

2 g2 d
 d2 h + 2 g2 z2 h + g d H-d + z hL + 4 d2 h p1

2 + H-d h + g Hd + z hLL Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 +

2 d p1 g Hd + z hL + h -2 d + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1 ,

c2 Ø
-d + 2 g z + 2 d p1 + Hd + 2 g zL2 + 4 d2 H-1 + p1L p1

2 g d
>;

In order to calculate the robustness of c2 to the underlying parameters, we need to restore some of the original HdimensionalL parameters

sol1@@2DD ê. 8g Ø g c0, c2 Ø c2 ê c0, z Ø v0 êv1, d Ø dêv1< êê Simplify

c2

c0
Ø

-d + 2 d p1 + 2 g v0 c0 + v1
-4 d2 p1+4 d2 p1

2+Hd+2 g v0 c0L2
v1
2

2 d g c0

We may rearrange this to see that g v0
c0

d all lump together as a single parameter, which we may call w. Thus we have

AssumingBd > 0 ,

FullSimplifyBc2 ã
-d + 2 d p1 + 2 g v0 c0 + -4 d2 p1 + 4 d2 p1

2 + Hd + 2 g v0 c0L2

2 d g
ê. c0 Ø

w d

g v0
FF

c2 ã
-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1

2 g

Now we can see right away if 2 w<<-1 + 2 p1 (which requires p1 > 0.5L then that guarantees 2 w << 1, which means c2->

-1+2 p1+ 4 p1 H- 1+p1L+1

2 g
which simplifies to

2 p1 - 1
g . So it follows that for 2 w<<-1 + 2 p1, the system can be arbitrarily robust to w, i.e. to v0, c0, and d.

We can also show this by defining sensitivity according to its usual meaning in engineering:

Sen@y_, x_D := D@y, xD
x

y

AssumingBg > 0, FullSimplifyBSenB
-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1

2 g
, wFFF

w 2 + 2+4 w

H1+2 wL2+4 H-1+p1L p1

-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1

Supplemental Material, Lander et al.

Plot3DB
w 2 + 2+4 w

H1+2 wL2+4 H-1+p1L p1

-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1
, 8p1, 0, 1<, 8w, 0, 1<, PlotRange Ø 80, 1<,

AxesLabel Ø 8"p1", "w", "sensitivity to w"<, PlotLabel Ø Style@"Figure S1", Bold, LargeDF

So sensitivity to v0, c0, and d can indeed be made arbitrariy small for p1 > 0.5 and w<<1. While we're at it we can also examine the sensitivity to p1

Plot3DBEvaluateBSenB
-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1

2 g
, p1FF, 8p1, 0, 1<,

8w, 0, 1<, PlotRange Ø 80, 3<, AxesLabel Ø 8"p1", "w", "sensitivity to p1"<,
PlotLabel Ø Style@"Figure S2", Bold, LargeDF

To visualize sensitivity to g, we need replace w with a g (since w is a function of g), then calculate sensitivity to g, then resubstitute a g with w

Supplemental Material, Lander et al.

AssumingBg > 0,

FullSimplifyBSenB
-1 + 2 w + 2 p1 + H1 + 2 wL2 + 4 H-1 + p1L p1

2 g
ê. w Ø a g, gFFF ê. g Ø wêa

1 + 2 w - 2 p1 - H1 + 2 wL2 + 4 H-1 + p1L p1

2 H1 + 2 wL2 + 4 H-1 + p1L p1

Plot3DB
1 + 2 w - 2 p1 - H1 + 2 wL2 + 4 H-1 + p1L p1

2 H1 + 2 wL2 + 4 H-1 + p1L p1
, 8p1, 0, 1<, 8w, 0, 1<, PlotRange Ø All,

AxesLabel Ø 8"p1", "w", "sensitivity to g"<, PlotLabel Ø Style@"Figure S3", Bold, LargeDF

So low sensitivity to w comes at the expense of linear sensitivity to g.

5. Final - state solutions in the absence of feedback (Fig. S4-S5)
„ Consider the time dependent solution for a two stage system, with initial conditions of c0 = cinit and c1= 0, and a constant p0<0.5 and no death

of the terminal cell
system1 = 8c0'@tD ã H-1 + 2 p0L v0 c0@tD, c1'@tD ã 2 H1 - p0L v0 c0@tD, c0@0D ã cinit, c1@0D ã 0<;

To simplify things, let's define a time scale t = t v0. then „t = 1v0 „ t.

system2 = AssumingAv0 > 0, SimplifyAsystem1 ê. 9cn_'@tD Ø v0 cn'@tD, cn_@tD Ø cn@tD=EE
8H-1 + 2 p0L c0@tD ã c0

£@tD, 2 H-1 + p0L c0@tD + c1
£@tD ã 0, cinit ã c0@0D, c1@0D ã 0<

Solving the differential equation directly:

DSolve@system2, 8c0@tD, c1@tD<, tD êê FullSimplify

::c0@tD Ø ‰t H-1+2 p0L cinit, c1@tD Ø
2 I-1 + ‰t H-1+2 p0LM H-1 + p0L cinit

1 - 2 p0
>>

We may evaluate c1@tDas t goes to infinity to get the total number of terminal cells produced.

Supplemental Material, Lander et al.

AssumingBp0 <
1

2
, LimitB

2 I-1 + ‰t H-1+2 p0LM H-1 + p0L cinit

1 - 2 p0
, t -> ¶FF

2 H-1 + p0L cinit

-1 + 2 p0

We may then calculate the sensitivity of this output to p0.

s = SenB
2 H-1 + p0L cinit

-1 + 2 p0
, p0F êê Simplify

p0

1 - 3 p0 + 2 p0
2

It is useful to expess this number in terms of the amplification factor, "a" i.e. the final number of cells relative to the starting pool of progenitors. As we
can see from the expression for output, this factor is 2 Hp0 - 1L ê H2 p0 - 1L. Thus, we may express p0in terms of a

SolveBa ã
2 H-1 + p0L

-1 + 2 p0
, p0F êê Simplify

::p0 Ø
-2 + a

2 H-1 + aL>>

Thus for a 1000 fold amplification, p0needs to be 998
2 H999L or 0.4995

s ê. p0 Ø
-2 + a

2 H-1 + aL êê Simplify

-3 +
2

a
+ a

From this we can immediately see that, for values of the amplification factor above 10, the sensitivity of output to p0is approximately equal to the

amplification factor itself (i.e. enormous!)
„ Now let's consider the case where p0 is not a constant, but undergoes a linear decline over time, from a starting value of pmax to an ending

value of pmin, at time tmax. As before we will define our time scales in terms of v0 , and replace t with t. As long as pmin<0.5, the system will
reach a final state

system3 = system2 ê. p0 Ø Hpmax - pminL 1 -
t

tmax
+ pmin

: -1 + 2 pmin + Hpmax - pminL 1 -
t

tmax
c0@tD ã c0

£@tD,

2 -1 + pmin + Hpmax - pminL 1 -
t

tmax
c0@tD + c1

£@tD ã 0, cinit ã c0@0D, c1@0D ã 0>

DSolve@system3, 8c0@tD, c1@tD<, tD êê Flatten êê FullSimplify

:c0@tD Ø ‰
t H-pmax t+pmin t-tmax+2 pmax tmaxL

tmax cinit, c1@tD Ø

1

2 Hpmax - pminL -2 K-1 + ‰
t J-1+2 pmax+ H-pmax+pminL t

tmax
NO Hpmax - pminL + ‰

H1-2 pmaxL2 tmax

4 Hpmax-pminL p H-pmax + pminL tmax

ErfiB-2 pmin t + 2 pmax Ht - tmaxL + tmax

2 H-pmax + pminL tmax

F - ErfiB tmax - 2 pmax tmax

2 H-pmax + pminL tmax

F cinit>

To find the final state, we see how c1 behaves as t goes to infinity.

Supplemental Material, Lander et al.

sol3 = AssumingBpmax < 1 && pmin <
1

2
&& pmax > pmin && tmax > 1 && cinit > 0,

LimitB 1

2 Hpmax - pminL -2 K-1 + ‰
t J-1+2 pmax+

H-pmax+pminL t

tmax
NO Hpmax - pminL +

‰
H1-2 pmaxL2 tmax

4 Hpmax-pminL p H-pmax + pminL tmax ErfiB-2 pmin t + 2 pmax Ht - tmaxL + tmax

2 H-pmax + pminL tmax

F -

ErfiB tmax - 2 pmax tmax

2 H-pmax + pminL tmax

F cinit , t -> ¶FF êê Simplify

1

2 Hpmax - pminL 2 pmax - 2 pmin + ‰
H1-2 pmaxL2 tmax

4 Hpmax-pminL p Hpmax - pminL tmax -

‰
H1-2 pmaxL2 tmax

4 Hpmax-pminL p Hpmax - pminL tmax ErfB tmax - 2 pmax tmax

2 Hpmax - pminL tmax

F cinit

In the special case of p going from 1 to zero, this expression is considerably more compact

sol4 = sol3 ê. 8pmax Ø 1, pmin Ø 0< êê FullSimplify

1

2
2 + ‰tmaxê4 p tmax 1 + ErfB tmax

2
F cinit

How sensitive is this to tmax?

s4 = Sen@sol4, tmaxD êê FullSimplify

1

4
2 + tmax -

4

2 + ‰tmaxê4 p tmax K1 + ErfB tmax
2

FO

ParametricPlotB:sol4
cinit

, s4>, 8tmax, 0, 20<, AspectRatio Ø 0.6,

AxesLabel Ø 8"amplification factor", "sensitivity to tmax"<,
PlotLabel Ø Style@"Figure S4", Bold, LargeDF

200 400 600 800 1000 1200
amplification factor

1

2

3

4

5

sensitivity to tmax
Figure S4

So we see that for an amplification factor of 1000, the sensitivity to the rate of decline of p0is about 5, which is still quite high.

Alternatively, we may look at the special case when p goes from pmax to zero, then the expression for final output is

Supplemental Material, Lander et al.

Alternatively, we may look at the special case when p goes from pmax to zero, then the expression for final output is

sol5 = sol3 ê. pmin Ø 0 êê FullSimplify

1

2
2 +

‰
1

4
J-4+ 1

pmax
+4 pmaxN tmax

p tmax ErfcB H1-2 pmaxL tmax

2 pmax tmax
F

pmax tmax
cinit

s5 = Sen@sol5, pmaxD êê FullSimplify

2 pmax H1 + 2 pmaxL tmax +

‰
1

4
J-4+ 1

pmax
+4 pmaxN tmax

p pmax tmax I-2 pmax - tmax + 4 pmax2 tmaxM ErfcBH1 - 2 pmaxL tmax

2 pmax tmax
F ì

4 pmax 2 pmax + ‰
1

4
J-4+ 1

pmax
+4 pmaxN tmax

p pmax tmax ErfcBH1 - 2 pmaxL tmax

2 pmax tmax
F

Let us pick a variety of different tmax values, and and examine the curve relating amplification factor to sensitivity.

ParametricPlotB::sol5
cinit

, s5> ê. tmax Ø 19,

:sol5
cinit

, s5> ê. tmax Ø 30, :sol5
cinit

, s5> ê. tmax Ø 40, :sol5
cinit

, s5> ê. tmax Ø 50>,

8pmax, 0, 1<, AspectRatio Ø 0.8, PlotStyle Ø 8Red, Green, Blue, Black<,
AxesLabel Ø 8"amplification factor", "sensitivity to pmax"<,
PlotLabel Ø Style@"Figure S5", Bold, LargeDF

200 400 600 800 1000 1200 1400
amplification factor

5

10

15

20

25

30

35

sensitivity to pmax
Figure S5

Here we see that, to get an amplification factor of 1000, sensitivity to pmax has to be at least 10, no matter the choice of tmax.

6. Final - state solutions in the presence of feedback (Fig. S6-S11)
Now let's put in feedback of the same sort we utilized in modeling steady state behaviors. We notice right away that, since it was possible to scale the units
of time to v0, and since we are only interested in the limiting behavior of the output at infinite time, then feedback onto v0 can have no effect (i.e. the

influence of v0 on the output is only on the time scale at which output develops, but it cannot change the final value). Thus, we only consider feedback on

p0.

Supplemental Material, Lander et al.

system4 = system2 ê. p0 Ø
p0

1 + g c1@tD

:c0@tD -1 +
2 p0

1 + g c1@tD
ã c0

£@tD, 2 c0@tD -1 +
p0

1 + g c1@tD
+ c1

£@tD ã 0, cinit ã c0@0D, c1@0D ã 0>

Mathematica cannot solve this system of differential equations directly. However, we can determine its long-term behavior as follows: Since the first
equation gives us „x0

„t
and the second one gives us „x1

„t
, then we may divide to get „x0

„ c1
.

c0'@c1D ã
-1 +

2 p0
1+g c1

-2 J-1 +
p0

1+g c1
N
;

This equation can be solved. As for boundary conditions, we know that when c0 = cinit, c1=0. For reasons that are not important, Mathematica doesn't

like having subscripts in the argument for c0@c1], so we will replace c1with y wherever we see it, and then substitute c1 back in after solving.

DSolveB:c0'@yD ã
-1 +

2 p0
1+g y

-2 J-1 +
p0

1+g y
N
, c0@0D ã cinit>, c0@yD, yF ê. y Ø c1 êê Simplify

::c0@c1D Ø
H-Log@1 - p0D + Log@1 - p0 + g c1DL p0 - g Hc1 - 2 cinitL

2 g
>>

As g ≠0, we may write this more compactly as

c0 ã cinit -
c1

2
+

p0 LogB1 +
g c1

1-p0
F

2 g

Now in the limit of infinite time, we know from inspection of the initial system of equations that, at t=¶, and only then, c0 goes to zero, and c1goes to its

final value, which we may call c1 final. We can therefore conclude:

0 ã 2 g cinit - g c1 final + p0 LogB1 +
g c1 final

1 - p0
F ;

This gives us an implicit relationship between a and cinit. To see this graphically, we first non-dimensionalize the cell number to g. Thus set g cinit = j,

and g c1 final = y. Then we have

0 ã 2 j - y + p0 LogB1 +
y

1 - p0
F ;

Below we plot y vs. j for a variety of values of p0,

Supplemental Material, Lander et al.

ContourPlotBEvaluateBTableB 2 j - y + p0 LogB1 +
y

1 - p0
F ã 0 , 8p0, 0.1, 0.9, 0.1<FF,

8j, 0, 0.1<, 8y, 0, 4<, AxesLabel Ø 8"g * initconds", "final state"<,
PlotLabel Ø Style@"Figure S6", Bold, LargeDF

0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

Figure S6

We may use log-log plotting to better explore the relationship over greater ranges, and to visualize sensitivity better

Supplemental Material, Lander et al.

ContourPlotB

EvaluateBTableB 2µ10^logj - 10^logy + p0 LogB1 +
10^logy

1 - p0
F ã 0 , 8p0, 0.1, 0.9, 0.1<FF,

8logj, -4, 0<, 8logy, -2, 2<, AxesLabel Ø 9"log10Hg * initcondsL", "log10final state"=,
PlotLabel Ø Style@"Figure S7", Bold, LargeDF

-4 -3 -2 -1 0
-2

-1

0

1

2

Figure S7

Here we see that the relationship between y and j is a linear one, except when p is large and j is small, in which case sensitivity drops very low. Are these
values achievable for desirable values of the amplification factor (e.g. 1000)? We may go back to our equation and introduce the amplification factor a =
c1 final/ cinit to get

0 ã H2 - a L j + p0 LogB1 +
a j

1-p0
F ;

Here we plot a vs .j for a variety of values of p0. Again the curves with the highest p0 are the ones at the top.

Supplemental Material, Lander et al.

ContourPlotBEvaluateBTableB H2 - 10^logaL 10^logj + p0 LogB1 +
10^logaµ10^logj

1 - p0
F ã 0 ,

8p0, 0.1, 0.9, 0.1<FF, 8logj, -4, 0<, 8loga, 0, 4<,
AxesLabel Ø 9"log10Hg * initcondsL", "log10amplification factor"=,
PlotLabel Ø Style@"Figure S8", Bold, LargeDF

-4 -3 -2 -1 0
0

1

2

3

4

Figure S8

Here we see that high amplification factors occur for low j (less than 10-2M and high p0 (>0.5). These are the same conditions that lead y to be insensitive

to j. Thus, we see that conditions where output is insensitive to cinitare precisely those where amplification is high.

What about the sensitivity of the output to p0 ?

Supplemental Material, Lander et al.

ContourPlotB

EvaluateBTableB 2 j - 10^logy + 10^logp0 LogB1 +
10^logy

1 - 10^logp0
F ã 0 , 8j, 0, 0.01, 0.001<FF,

9logp0, -1, 0=, 8logy, 0, 1<, MaxRecursion Ø 4,

AxesLabel Ø 9"log10p0", "log10final state"=, PlotLabel Ø Style@"Figure S9", Bold, LargeDF

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure S9

Let's specifically consider the case when the amplification factor =1000. Then y/j = 1000, so we may subsitute y/1000 for j

0 ã 2 j - y + p0 LogB1 +
y

1 - p0
F ê. j Ø y ê1000

0 ã -
499 y

500
+ LogB1 +

y

1 - p0
F p0

Supplemental Material, Lander et al.

ContourPlotB0 ã -
499µ10^logy

500
+ LogB1 +

10^logy

1 - 10^logp0
F 10^logp0, 9logp0, -2, 0=, 8logy, -1, 1<,

AxesLabel Ø 9"log10p0", "log10final state"=, PlotLabel Ø Style@"Figure S10", Bold, LargeDF

-2.0 -1.5 -1.0 -0.5 0.0
-1.0

-0.5

0.0

0.5

1.0

Figure S10

It appears there is an "optimal" zone of lowest possible sensitivity to p, which occurs for p that are close to but not too close to 1. Let's focus in a bit: We'll
draw dashed lines for slopes of 4 and 5. From them we can see that when p0 is around10-0.1 to 10-0.025 (i.e. 0.8 to 0.95), we get a slope of the log-log plot

that is somewhere between 4 and 5.

Supplemental Material, Lander et al.

plot1 = ContourPlotB0 ã -
499µ10^logy

500
+ LogB1 +

10^logy

1 - 10^logp0
F 10^logp0,

9logp0, -0.3, 0=, 8logy, -0.5, 1<, AxesLabel Ø 9"log10p0", "log10final state"=,
PlotLabel Ø Style@"Figure S11", Bold, LargeD, ContourStyle Ø Thick, MaxRecursion Ø 4F;

plot2 = ContourPlotAEvaluateATableAlogy ã 0.70 + i logp0, 8i, 4, 5<EE,
9logp0, -0.3, 0=, 8logy, -0.5, 1<, ContourStyle Ø Dashing@LargeDE;

Show@
plot1,
plot2D

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure S11

Thus, in conclusion, it is possible to to achieve a 1000-fold expansion, an extremely low sensitivity to cinit and a sensitivity to p0that is <5.

It is straightfoward to show that the same conclusions are reached if the expansion factor is even larger. Indeed, this is a limiting case.

7. Time-dependent solutions (Fig. S12-S13)
Here we start with the general model of section 1 for a three stage lineage, introduce feedback onto p0, v0, p1 and v1, as already described in sections 4 and

5. In addition, we nondimensionalize as in section 5 by defining a time scale t= t v0. Also, as in section 4, we define z = v0 êv1 and d = d êv1.

(finally, because of some issues with Mathematica options we will write p0 instead of p0 and p1 instead of p1. This gives the following system of ODEs.

system = :c0
£@tD ã

z c0@tD J-1 +
2 p0

1+j c2@tDN
1 + k c2@tD ,

c1
£@tD ã

c1@tD J-1 +
2 p1

1+g c2@tDN
1 + h c2@tD +

2 z c0@tD J1 -
p0

1+j c2@tDN
1 + k c2@tD , c2

£@tD ã -d c2@tD +
2 c1@tD J1 -

p1

1+g c2@tDN
1 + h c2@tD >;

As already described in section 4, there are two non-trivial steady state solutions for this system, which we will call solset and altsolset.

Supplemental Material, Lander et al.

solset = :css0 Ø -
H-1 + 2 p0L Hj + k H-1 + 2 p0LL Hj + g H-1 + 2 p0L - 2 j p1L d

2 j2 Hg - 2 g p0 + j H-1 + p1LL z
,

css1 Ø -
H-1 + 2 p0L Hj + g H-1 + 2 p0LL Hj + h H-1 + 2 p0LL d

2 j2 Hg - 2 g p0 + j H-1 + p1LL
, css2 Ø

-1 + 2 p0

j
>;

altsolset = :css0 Ø 0, css1 Ø
H-1 + 2 p1L Hg + h H-1 + 2 p1LL d

g2
, css2 Ø

-1 + 2 p1

g
>;

We may explore the time dependent behavior of the system for various choices of initial condition: For example, here's a starting case in which the initial
conditions have c0 and c1 starting at their steady state values, but c2at zero, mimicking regeneration in the olfactory epithelium following an acute loss of

ORNs.

WithB8s1 = system<, ManipulateB
PlotBEvaluateB8c0@tD, c1@tD, c2@tD< ê.

FlattenBNDSolveBJoin@s1, 8c0@0D ã 0.367059, c1@0D ã 1.08706, c2@0D ã 0<D,

8c0@tD, c1@tD, c2@tD<, :t, 0, 1.2
Log@5D

d
>FFF,

:t, 0, 1.2
Log@5D

d
>, PlotRange Ø All, PlotStyle Ø 8Green, Red, Blue<F,

Style@"Figure S12", Bold, LargeD, Item@"Steady state solution is"D,
DynamicBEvaluateBIfB-1 + 2 p1

g
>

-1 + 2 p0

j
, Evaluate@altsolsetD, Evaluate@solsetDFFF,

88p0, 0.51<, 0.001, 0.999<, 88p1, 0.55<, 0.001, 0.999<,
88d, 0.012<, 0.002, 0.2<, 88z, 1.5<, 0.1, 10<, 88g, 0.04<, 0.001, 5<,
88h, 1<, 0, 10<, 88j, 0.002<, 0.001, 5<, 88k, 2.5<, 0, 200<FF

Figure S12
Steady state solution is
8css0Ø 0.367059, css1Ø 1.08706, css2Ø 10.<
p0

p1

d

z

g

h

j

k

50 100 150

2

4

6

8

10

Below is a case in which the steady state solution tells us that cell type "0" will eventually become extinguished. However, because the feedback on v0by

cell type "2" is so large, when numbers of cell type "2" are significant, cell type "0" goes through cell cycles at an extremely slow rate. As a result,
extinction is forestalled for many hundreds of cell cycles (potentially for the lifetime of the organism)

Supplemental Material, Lander et al.

WithB8s1 = system<, ManipulateB
PlotBEvaluateB8c0@tD, c1@tD, c2@tD< ê. FlattenBNDSolveB

Join@s1, 8c0@0D ã 0.2, c1@0D ã 0, c2@0D ã 0<D, 8c0@tD, c1@tD, c2@tD<, :t, 0, 50
Log@5D

d
>FFF,

:t, 0, 50
Log@5D

d
>, PlotRange Ø All, PlotStyle Ø 8Green, Red, Blue<F,

Style@"Figure S13", Bold, LargeD, Item@"Steady state solution is"D,
DynamicBEvaluateBIfB-1 + 2 p1

g
>

-1 + 2 p0

j
, Evaluate@altsolsetD, Evaluate@solsetDFFF,

88p0, 0.95<, 0.001, 0.999<, 88p1, 0.85<, 0.001, 0.999<,
88d, 0.2<, 0.002, 0.2<, 88z, 1<, 0.1, 10<, 88g, 0.16<, 0.001, 5<,
88h, 0.1<, 0, 10<, 88j, 0.3<, 0.001, 5<, 88k, 40<, 0, 200<FF

Figure S13
Steady state solution is
8css0Ø 0, css1Ø 1.25781, css2Ø 4.375<
p0

p1

d

z

g

h

j

k

100 200 300 400

1

2

3

4

5

6

7

If a case like the one above were to occur in nature, what would an experimental biologist observe? The system would appear to contain a very slowly
cycling stem cell (it might even be called "quiescent" and would certainly be found to be "label-retaining", i.e. after one round of division it would be a
very long time before such a cell underwent a subsequent round), which only becomes highly proliferative in response to tissue injury. The experimentalist
might also observe that the numbers of such stem cells gradually decline over the lifetime of the organism. All of these observations are ones that have
frequently been made for tissue stem cells in various contexts. Here they arise simply as a result of feedback interactions. The cell that displays them has
no innate programming to do so. In the absence of feedback, the proliferative and differentiative behaviors of cell type "0" would, in fact, be very similar
to those of cell type "1".

8. Parameter space exploration~methods
To explore the dynamic behavior of different feedback models, the following steps are followed

1. The names of the parameters of the system are given in a list named "params"

2. If the system has no feedback on p0then the only non-trivial steady state is one in which p0 = 0.5, and c0 is arbitrary. In this case, the variables c1 and

c2 are normalized to c0and renamed c1 and c2 respectively. In addition, the parameters g and h are multiplied by c0to give the new parameters g and h,

respectively. By all this normalization, c0may be eliminated entirely from the system of equations.

3. If the steady state solution can be solved for directly, it is named "solset". If the variables were c0@tD, c1@tD and c2@tD, their steady state versions are

named css0, css1 and css2. If the variables were c1@tD and c2@tDtheir steady state versions are named css1 and css2. [N.B. if there is more than one steady

state, only one is chosen here; parameter values that are inconsistent with positive solutions for that steady state will get identified during the run and saved
in a separate file; these may be re-run later, using a different one of the steady state solutions in the code]

Supplemental Material, Lander et al.

3. If the steady state solution can be solved for directly, it is named "solset". If the variables were c0@tD, c1@tD and c2@tD, their steady state versions are

named css0, css1 and css2. If the variables were c1@tD and c2@tDtheir steady state versions are named css1 and css2. [N.B. if there is more than one steady

state, only one is chosen here; parameter values that are inconsistent with positive solutions for that steady state will get identified during the run and saved
in a separate file; these may be re-run later, using a different one of the steady state solutions in the code]
If it cannot be solved directly in any reasonably compact form, the system of equations that determines the steady state is named "sssystem" and left
unsolved.
4. If the steady state solution was solved for directly, the set of ODEs representing the model is transformed with new variables z0, z1and z2 representing

c1, c2 and c3, or c1and c2, normalized to their steady state values. This is given the name "system". If the steady state could not be solved for directly, the

set of ODEs is left in its original form and given the name "tempsystem"
5. Definitions and parameter ranges are then entered as below: Initconds refer to intial conditions where different fractions of different cell types are
eliminated. Endpoints refer to the expected times to reach 80% of steady state for systems with the corresponding initial conditions, in the absence of any
feedback regulation.

a. If the system has feedback on p0then the following is used:

vars = 8z0@tD, z1@tD, z2@tD<;
initconds@1D = 8z0@0D ã 1, z1@0D ã 1, z2@0D ã 0<;
initconds@2D = 8z0@0D ã 1, z1@0D ã 0, z2@0D ã 0<;
initconds@3D = 8z0@0D ã 1, z1@0D ã 1, z2@0D ã 0.25<;
initconds@4D = 8z0@0D ã 0.5, z1@0D ã 0, z2@0D ã 0<;
endpoint@1D = 1.2 Log@5Dêd;
endpoint@2D = 1.2 Log@5Dêd;
endpoint@3D = 1.2 HLog@5D - Log@1êH1 - initconds@3D@@3, 2DDLDLêd;
endpoint@4D = 1êz + 1.2 Log@5Dêd;
p0range = 80.5, 1<;
p1range = 80, 1<;
Logdrange = 8-2.5, -0.5<;
Logzrange = 8-1, 1<;
Loggrange = 8-2, 1<;
Loghrange = 8-2, 1<;
Logjrange = 8-2, 1<;
Logkrange = 8-2, 1<;
wholeset = Join@params,

8f@1D, f@2D, f@3D, f@4D, css0, css1, css2, t@1D, t@2D, t@3D, t@4D, senx, send<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;

The penultimate statement defines a list that joins the parameters to a variety of other things that will be defined later. The last statement defines a function
that picks out from any list the element that is at the same position as the named symbol is in wholeset.

b. If the system has no feedback on p0then the following is used instead:

vars = 8z1@tD, z2@tD<;
initconds@1D = 8z1@0D ã 1, z2@0D ã 0<;
initconds@2D = 8z1@0D ã 0, z2@0D ã 0<;
initconds@3D = 8z1@0D ã 1, z2@0D ã 0.25<;
endpoint@1D = 1.2 Log@5Dêd;
endpoint@2D = 1.2 Log@5Dêd;
endpoint@3D = 1.2 HLog@5D - Log@1êH1 - initconds@3D@@2, 2DDLDLêd;
p1range = 80, 1<;
Logdrange = 8-2.5, -0.5<;
Logzrange = 8-1, 1<;
Loggrange = 8-5, 1<;
Loghrange = 8-2, 2<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;

6. If the Hill functions in the ODE system have Hill coefficients n, the values of these are next specified. e.g. {ng, nh, nj, nk} = {2, 2, 2, 2};

7. Next, calculated expression for the values of sensitivity to c0 and sensitivity to d are are given the names sx and sd, respectively. These may be

defined in terms of the parameters or in terms of steady state values of the variables, as these will be calculated anyway.
If there is feedback on p0, the following code is then run; it is a Do-loop that runs for 20,000 times, writing a result to the end of a file each time.

Supplemental Material, Lander et al.

iterations = 20000;

TimingBOpenAppend@"filename", FormatType Ø OutputForm, PageWidth Ø InfinityD;
OpenAppend@"filenamefailed", FormatType Ø OutputForm, PageWidth Ø InfinityD;
DoB8p0, p1, d, z, g, h, j, k< = 8RandomReal@p0rangeD, RandomReal@p1rangeD,

10^RandomReal@LogdrangeD, 10^RandomReal@LogzrangeD, 10^RandomReal@LoggrangeD,
10^RandomReal@LoghrangeD, 10^RandomReal@LogjrangeD, 10^RandomReal@LogkrangeD<;

cell0 = css0 ê. solset; cell1 = css1 ê. solset; cell2 = css2 ê. solset;
IfBcell0 § 0 Í cell1 § 0, Write@"filenamefailed", 8p0, p1, d, z, g, h, j, k<D,

f@1D = Log@2D*IfBz § 1, LogB2, 2
1

z Hcell0 + cell1 + cell2L

2 cell0 + 2
1

z cell1

F, n ê. FindRootA

21+zHn-1L cell0 + 2n cell1 ã cell0 + cell1 + cell2, 8n, 0, 20<, Method Ø "Brent"EF;

f@2D = Log@2D*IfBz § 1, MaxB0, -1 +
1

z
+ LogB2, cell0 + cell1 + cell2

cell0
FF,

MaxB0,
H-1 + zL + LogA2, cell0+cell1+cell2

cell0
E

z
FF;

f@3D = Log@2D*IfBz § 1, LogB2, 4 cell0 + 4 cell1 + 3 cell2

2
3-

1

z cell0 + 4 cell1

F, n ê. FindRootB

21+zHn-1L cell0 + 2n cell1 ã cell0 + cell1 +
3 cell2

4
, 8n, 0, 20<, Method Ø "Brent"FF;

f@4D = f@2D +
Log@2D

z
;

Table@plotdata@iD = InputForm@Plot@Evaluate@
Last@varsD ê. Flatten@NDSolve@Join@system, initconds@iDD, vars, 8t, 0, endpoint@iD<DDD,

8t, 0, endpoint@iD<, PlotRange Ø AllDD, 8i, 1, 4<D;
Table@list@iD = Flatten@Cases@plotdata@iD, Line@z_D Ø z, Depth@plotdata@iDDD, 1D,
8i, 1, 4<D;
Table@w@iD = Length@list@iDD; While@0.8` < list@iDPw@iD, 2T < 1.2` && w@iD > 1,

w@iD = w@iD - 1D, 8i, 1, 4<D;
q = wholeset ê. 8css0 Ø cell0, css1 Ø cell1, css2 Ø cell2,

t@1D Ø list@1DPw@1D, 1T, t@2D Ø list@2DPw@2D, 1T,
t@3D Ø list@3DPw@3D, 1T, t@4D Ø list@4DPw@4D, 1T, senx Ø sx, send Ø sd<;

Write@"filename", AccountingForm@qDDF,
8iterations<F;
Close@"filename"D; Close@"filenamefailed"D;
Clear@iterations, cell0, cell1, cell2, f, list, w, p0, p1, d, z, g, h, j, kDF

Here the code is annotated:

iterations = 20000;

TimingBOpenAppend@"filename", FormatType Ø OutputForm, PageWidth Ø InfinityD;
OpenAppend@"filenamefailed", FormatType Ø OutputForm, PageWidth Ø InfinityD;
H*these steps open the files. Normally, one would enter a different filename for
each model. The file named "filenamefailed" is there to hold the parameters
of any parameter sets that might fail to yield a positive steady state*L
DoB8p0, p1, d, z, g, h, j, k< = 8RandomReal@p0rangeD, RandomReal@p1rangeD,

10^RandomReal@LogdrangeD, 10^RandomReal@LogzrangeD, 10^RandomReal@LoggrangeD,
10^RandomReal@LoghrangeD, 10^RandomReal@LogjrangeD, 10^RandomReal@LogkrangeD<;

H*these steps choose values for the parameters at randome from the indicated ranges*L
cell0 = css0 ê. solset; cell1 = css1 ê. solset; cell2 = css2 ê. solset;
H*these commands calcualte the steady state values of cell types 0,

, *L

Supplemental Material, Lander et al.

H*these commands calcualte the steady state values of cell types 0,
1 and 2, from the steady state solution that was provided*L
IfBcell0 § 0 Í cell1 § 0, Write@"filenamefailed", 8p0, p1, d, z, g, h, j, k<D,
H*The first part of this IF statement test whether any cell type gives steady state less
than or equal to zero, and if so, writes the parameters to "filenamefailed",
and moves on to a new parameter set. Otherwise four f-values are
calculated. These are estimations of the fastest possible regeneration times,

given the number of cells that need to be made--i.e. they come from models
in which every cell divides the minimum number of times to produce
the right total number of cells, which then, at the very end,
differentiate. These values were not used in any of the data plotted in the manuscript,
but are useful for comparison*L

f@1D = Log@2D*IfBz § 1, LogB2, 2
1

z Hcell0 + cell1 + cell2L

2 cell0 + 2
1

z cell1

F, n ê. FindRootA

21+zHn-1L cell0 + 2n cell1 ã cell0 + cell1 + cell2, 8n, 0, 20<, Method Ø "Brent"EF;

f@2D = Log@2D*IfBz § 1, MaxB0, -1 +
1

z
+ LogB2, cell0 + cell1 + cell2

cell0
FF,

MaxB0,
H-1 + zL + LogA2, cell0+cell1+cell2

cell0
E

z
FF;

f@3D = Log@2D*IfBz § 1, LogB2, 4 cell0 + 4 cell1 + 3 cell2

2
3-

1

z cell0 + 4 cell1

F, n ê. FindRootB

21+zHn-1L cell0 + 2n cell1 ã cell0 + cell1 +
3 cell2

4
, 8n, 0, 20<, Method Ø "Brent"FF;

f@4D = f@2D +
Log@2D

z
;

Table@plotdata@iD = InputForm@Plot@Evaluate@
Last@varsD ê. Flatten@NDSolve@Join@system, initconds@iDD, vars, 8t, 0, endpoint@iD<DDD,

8t, 0, endpoint@iD<, PlotRange Ø AllDD, 8i, 1, 4<D;
H*The above command creates a plot of the dynamic behavior of the system,
for some initial conditions, from a time of zero to an endpoint;
it does so for four different initial conditions and endpoints. These plots are
read in in InputForm, which means the points are a list, rather than a Graphic*L
Table@list@iD = Flatten@Cases@plotdata@iD, Line@z_D Ø z, Depth@plotdata@iDDD, 1D,
8i, 1, 4<D;

H*This strips out unnecessary information from the list*L
Table@w@iD = Length@list@iDD;
While@0.8` < list@iDPw@iD, 2T < 1.2` && w@iD > 1, w@iD = w@iD - 1D, 8i, 1, 4<D;

H*This starts at the last point in each list and moves toward zero,
checking for the first value of the terminal cell type that lies OUTSIDE of
the band of 20% around its steady state value. This is given the name w@iD,
with i being an index for each of the four initial conditions. *L
q = wholeset ê. 8css0 Ø cell0, css1 Ø cell1, css2 Ø cell2,

t@1D Ø list@1DPw@1D, 1T, t@2D Ø list@2DPw@2D, 1T,
t@3D Ø list@3DPw@3D, 1T, t@4D Ø list@4DPw@4D, 1T, senx Ø sx, send Ø sd<;

H*This creates a temporary list called q,
which stores along with the parameter values and the f-values,
the three steady state values, and the times t@iD at which the w@iD occur for each i*L
Write@"filename", AccountingForm@qDD
H*This appends q to the file*L

F,
8iterations<F;
Close@"filename"D; Close@"filenamefailed"D;
Clear@iterations, cell0, cell1, cell2, f, list, w, p0, p1, d, z, g, h, j, kDF

8. In the event that the steady state system cannot be solve for directly, the code is modified as follows:

Supplemental Material, Lander et al.

8. In the event that the steady state system cannot be solve for directly, the code is modified as follows:

Timing@OpenAppend@"filename", FormatType Ø OutputForm, PageWidth Ø InfinityD;
OpenAppend@"filenamefailed", FormatType Ø OutputForm, PageWidth Ø InfinityD;
Do@8p0, p1, d, z, g, h, j, k< = 8RandomReal@p0rangeD, RandomReal@p1rangeD,

10^RandomReal@LogdrangeD, 10^RandomReal@LogzrangeD, 10^RandomReal@LoggrangeD,
10^RandomReal@LoghrangeD, 10^RandomReal@LogjrangeD, 10^RandomReal@LogkrangeD<;

sssol = Flatten@Select@NSolve@sssystem, 8css0, css1, css2<D,
HRe@Ò@@1, 2DDD > 0 && Im@Ò@@1, 2DDD ã 0 && Re@Ò@@2, 2DDD > 0 &&

Im@Ò@@2, 2DDD ã 0 && Re@Ò@@3, 2DDD > 0 && Im@Ò@@3, 2DDD ã 0L ⅅ
H*The above finds the steady state solution numerically, after the parameters
have been selected. Since in many cases multiple steady states exist,
the command here discard any that have imaginary or negative-
valued solutions for any of the cell types*L
If@Length@sssolD ã 0, Write@"filenamefailed", paramsD ,
cell0 = css0 ê. sssol; cell1 = css1 ê. sssol; cell2 = css2 ê. sssol;
system = tempsystem ê. 8c0@tD Ø z0@tD*cell0, c0'@tD Ø z0'@tD*cell0, c1@tD Ø z1@tD*cell1,

c1'@tD Ø z1'@tD*cell1, c2@tD Ø z2@tD*cell2, c2'@tD Ø z2'@tD*cell2< ;
H*this command creates the normalized system, by using the newly calculated steady state
values to normalize the variables. From this point on the code proceeds as before*L

9. Recall that the cases "filenamefailed" do not necessarily represent cases with no steady state solution. For the systems examined here, they invariably
are cases in which c0goes to zero and non-zero steady states are reached for c1and c2 (i.e. c0 becomes extinguished and c1takes over as the stem cell).

For these cases, the parameters are subsequently read back out and used as the starting points for a similar parameter space exploration, but using a
different set of steady-state equations based specifically on the steady state in which c0 -> 0.

10. If there is no feedback on p0then the code is a little different and simpler (fewer initial conditions are possible, one less variable):

Supplemental Material, Lander et al.

iterations = 20000;

TimingBOpenWrite@"filename", FormatType Ø OutputForm, PageWidth Ø InfinityD;
DoB8p, d, z, g, h< = 8RandomReal@p1rangeD, 10^RandomReal@LogdrangeD,

10^RandomReal@LogzrangeD, 10^RandomReal@LoggrangeD, 10^RandomReal@LoghrangeD<;

cell1 = css1 ê. solset; cell2 = css2 ê. solset; f@1D = IfBz § 1, LogB2, 2
1

z H1 + cell1 + cell2L

2 + 2
1

z cell1

F,

n ê. FindRootA21+zHn-1L + 2n cell1 ã 1 + cell1 + cell2, 8n, 0, 20<, Method Ø "Brent"EF;

f@2D = IfBz § 1, MaxB0, -1 +
1

z
+ Log@2, 1 + cell1 + cell2DF,

MaxB0, H-1 + zL + Log@2, 1 + cell1 + cell2D
z

FF;

f@3D = IfBz § 1, LogB2, 4 + 4 cell1 + 3 cell2

2
3-

1

z + 4 cell1

F,

n ê. FindRootB21+zHn-1L + 2n cell1 ã 1 + cell1 +
3 cell2

4
, 8n, 0, 20<, Method Ø "Brent"FF;

Table@plotdata@iD = InputForm@Plot@Evaluate@Last@varsD ê.
Flatten@NDSolve@Join@system, initconds@iDD, vars, 8t, 0, endpoint@iD<DDD,

8t, 0, endpoint@iD<, PlotRange Ø AllDD, 8i, 1, 3<D;
Table@list@iD = Flatten@Cases@plotdata@iD, Line@z_D Ø z, Depth@plotdata@iDDD, 1D,
8i, 1, 3<D;
Table@w@iD = Length@list@iDD; While@0.8` < list@iDPw@iD, 2T < 1.2` && w@iD > 1, w@iD = w@iD - 1D,
8i, 1, 3<D;
q = wholeset ê. 8css1 Ø cell1, css2 Ø cell2, t@1D Ø list@1DPw@1D, 1T,

t@2D Ø list@2DPw@2D, 1T, t@3D Ø list@3DPw@3D, 1T, sen Ø sx<;
Write@"filename", AccountingForm@qDD,
8iterations<F;
Close@"filename"D;
Clear@iterations, cell1, cell2, f, list, w, p, d, z, g, hDF

„ "Fold Improvement in Regeneration Speed"

For all the cases in the text in which "improvement in regeneration speed" is referred to, the values were obtained from parameter-space explorations by
comparing the t[i] values (the last times at which terminal cell values are either 20% above or below steady state), with the times that would have been
expected, given the same steady state cell levels, but no feedback, i.e. assuming that the rate constant for approach to steady state is d.
Those times were:

For initial conditions #1: ln5/d

For initial conditions #2: ln5/d

For initial conditions #3: ln(15/4)/d

For initial conditions #4: ln5/d

Supplemental Material, Lander et al.

9. Parameter space exploration~ supplemental results (Fig. S14-S22)
„ Here we consider the case with feedback only on v1. The file with the parameter space exploration of that model (see previous section) was

named "2V1" and is read in and analyzed by the following code:
params = 8p, d, z, h<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB: 1 + Valu@Ò, css1D

1 + Valu@Ò, css1D + Valu@Ò, css2D,
Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

ToExpression@Import@"2V1", "List"DDF, PlotRange Ø All, GridLines Ø Automatic,

AxesLabel Ø 8"progenitor load", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S14", Bold, LargeDF

0.2 0.4 0.6 0.8 1.0
progenitor load

1.5

2.0

2.5

3.0

3.5
improvement in regeneration speed

Figure S14

This shows how regeneration speed improvement depends on having a high progenitor load. The horizontal gaps in the distributions of points are an
artifact of the fact that t[i] values were extracted from plots of the data, and as such are skewed according to the times chosen automatically by Mathemat-
ica for plotting.
Next, let's look at the relationship between regeneration speed improvement and the value of p1. When we look at all cases, there's no impressive

correlation.

Supplemental Material, Lander et al.

params = 8p, d, z, h<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB:Valu@Ò, pD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &, ToExpression@Import@"2V1", "List"DDF,
PlotRange Ø All, GridLines Ø Automatic,
AxesLabel Ø 8"p1", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S15", Bold, LargeDF

0.1 0.2 0.3 0.4 0.5
p1

1.5

2.0

2.5

3.0

3.5
improvement in regeneration speed

Figure S15

When we look at only those cases with progenitor loads <0.5, we see a strong corelation between high p-values and strong regeneration improvement.

Supplemental Material, Lander et al.

params = 8p, d, z, h<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB:Valu@Ò, pD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

SelectBToExpression@Import@"2V1", "List"DD, 1 + Valu@Ò, css1D
1 + Valu@Ò, css1D + Valu@Ò, css2D < 0.5 &FF,

PlotRange Ø All, GridLines Ø Automatic,
AxesLabel Ø 8"p1", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S16", Bold, LargeDF

0.1 0.2 0.3 0.4 0.5
p1

1.5

2.0

2.5

3.0

improvement in regeneration speed
Figure S16

When we look at only those cases with progenitor loads <0.1, we see that only cases with p1 close to 0.5 show any significant speed up. These cases will,

of course, be very sensitive to small changes in p1

Supplemental Material, Lander et al.

params = 8p, d, z, h<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB:Valu@Ò, pD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

SelectBToExpression@Import@"2V1", "List"DD, 1 + Valu@Ò, css1D
1 + Valu@Ò, css1D + Valu@Ò, css2D < 0.1 &FF,

PlotRange Ø All, GridLines Ø Automatic,
AxesLabel Ø 8"p1", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S17", Bold, LargeDF

0.1 0.2 0.3 0.4
p1

1.5

2.0

2.5

improvement in regeneration speed
Figure S17

Supplemental Material, Lander et al.

„ Next we consider the case with feedback only on p1 and v1. The file with the parameter space exploration of that model (see previous section)
was named "2P1V1" and is read in and analyzed by the following code:

params = 8p, d, z, g, h<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListLogPlotBMapB:Valu@Ò, senD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

ToExpression@Import@"2P1V1", "List"DDF, PlotRange Ø 80, 50<,
AxesLabel Ø 8"Sensitivity to c0", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S18", Bold, LargeDF

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity to c0

1

2

5

10

20

improvement in regeneration speed
Figure S18

Comparing this with Figure 5a, we see that the cases of very low sensitivity to c0now have improvements in regeneration speed that are clustered around 3,

and occasionally get close to 5. So this is some improvement on the case with feedback only on P1.

Supplemental Material, Lander et al.

„ Next we consider the case with feedback only on p0 . The file with the parameter space exploration of that model (see previous section) was
named "2P0" and is read in and analyzed by the following code:

params = 8p0, p1, d, z, j<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, f@4D, css0, css1, css2, t@1D, t@2D, t@3D, t@4D<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB:Log@10, Valu@Ò, jDD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

ToExpression@Import@"2P0", "List"DDF, PlotRange Ø All, GridLines Ø Automatic,

AxesLabel Ø 9"log10feedback gain", "improvement in regeneration speed"=,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S19", Bold, LargeDF

-2.0 -1.5 -1.0 -0.5 0.5 1.0
log10feedback gain

1.2

1.4

1.6

improvement in regeneration speed
Figure S19

Supplemental Material, Lander et al.

„ Next we consider the case with feedback only on v0 . The file with the parameter space exploration of that model (see previous section) was
named "2V0" and is read in and analyzed by the following code:

params = 8p, d, z, k<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, css1, css2, t@1D, t@2D, t@3D, sen<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotB

MapB:Valu@Ò, senD, Log@5D
Valu@Ò, dD Valu@Ò, t@1DD> &, ToExpression@Import@"2V0", "List"DDF,

PlotRange Ø All, GridLines Ø Automatic, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Sensitivity to c0", "improvement in regeneration speed"<,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S20", Bold, LargeDF

0.2 0.4 0.6 0.8
Sensitivity to c0

5

10

15

improvement in regeneration speed
Figure S20

This case is capable of producing good regeneration speed, but since there is no feedback on p0the lowest possible sensitivity to c0is 0.5.

Supplemental Material, Lander et al.

„ Next we consider the case with feedback only on p0 and v0 . The file with the parameter space exploration of that model (see previous section)
was named "2P0V0" and is read in an analyzed by the following code:

params = 8p0, p1, d, z, j, k<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, f@4D, css0, css1, css2, t@1D, t@2D, t@3D, t@4D<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD;
ListPlotBMapB:Log@10, Valu@Ò, jDD, Log@5D

Valu@Ò, dD Valu@Ò, t@1DD> &,

ToExpression@Import@"2P0V0", "List"DDF, PlotRange Ø All, GridLines Ø Automatic,

AxesLabel Ø 9"log10feedback gain", "improvement in regeneration speed"=,
ImageSize Ø 500, PlotLabel Ø Style@"Figure S21", Bold, LargeDF

-2.0 -1.5 -1.0 -0.5 0.5 1.0
log10feedback gain

2

3

4

5

6

7

8
improvement in regeneration speed

Figure S21

What we see here is that, with feedback onto both p0and v0the possibility of a large improvement in regeneration speed suddenly exists, and since there is

feedback on p0, all cases are perfectly robust to c0 (and d and v0). However, the following shows that, just as was true when feedback was on p1or

p1 and v1, those cases with good increase in regeneration speed, all display a decrease in the ratio of t[1]/t[3], which means that regeneration from a 75%

depletion is substantially slower than regeneration from a 100% depletion.

Supplemental Material, Lander et al.

params = 8p0, p1, d, z, j, k<;
wholeset = Join@params, 8f@1D, f@2D, f@3D, f@4D, css0, css1, css2, t@1D, t@2D, t@3D, t@4D<D;
Valu@list_, symbol_D := First@Part@list, Position@wholeset, symbolD@@1DDDD; ListLogLogPlotB

MapB: Log@5D
Valu@Ò, dD Valu@Ò, t@1DD,

Valu@Ò, t@1DD
Valu@Ò, t@3DD> &, ToExpression@Import@"2P0V0", "List"DDF,

PlotRange Ø All, AxesLabel Ø : " ln5

d t@1D", "t@1Dêt@3D">, AxesOrigin Ø 80.8, 10^0.085523<,

ImageSize Ø 500, PlotLabel Ø Style@"Figure S22", Bold, LargeDF

1.0 5.02.0 3.01.5 7.0

ln5

d t@1D
1.0

5.0

2.0

3.0

1.5

7.0
t@1Dêt@3D

Figure S22

10. Simulation of pulse - chase experiment (Fig. S23)
Clear@sD

The following code was used to simulate of the pulse chase experiment in Figure 4

Supplemental Material, Lander et al.

t1 = TableBa0 = 5; b0 = 5; s0 = 5; d0 = 0;

n0 = 500; a1 = 6; b1 = 5; s1 = 6; d1 =
9.69*0.23* 10loggdf

1 + 0.23*10loggdf
; n1 = 4000;

p1 = 12; p2 = 14; ln_ = an + bn + sn + dn;

p0 = 0.2; p1 =
0.30

1 + 15*10loggdf
;

Mashlist = RandomReal@8s0, b0 + s0<, n0D;
list1 = RandomReal@80, a1 + s1 + b1<, n1D;
list4 = Select@list1 - p2, Ò1 < 0 &D + a1 + s1 + b1 + d1;
list6 = Join@list4, list4, Select@list1 - p2, Ò1 ¥ 0 ⅅ
INPlist = Select@list6, 0.5 + s1 - p2 + p1 § Ò1 § -0.5 + b1 + s1 &D;

ORNlist = 8<; ORNtally = 8<; Allcelltally = 8<;
timecounter = 14; i = 0.1;
Do@MASHdividerlist = Table@l0, 82 p0 Length@Select@Mashlist, Ò1 § 0 &DD<D;
MASHdifferentiatorlist = Table@l1, 82 H1 - p0L Length@Select@Mashlist, Ò1 § 0 &DD<D;
INPdividerlist = Table@l1, 82 p1 Length@Select@INPlist, Ò1 § 0 &DD<D;
INPdifferentiatorlist = Table@0, 82 H1 - p1L Length@Select@INPlist, Ò1 § 0 &DD<D;
Mashlist = Join@Select@Mashlist, Ò1 > 0 &D, MASHdividerlistD - i;
INPlist = Join@Select@INPlist, Ò1 > 0 &D, MASHdifferentiatorlist, INPdividerlistD - i;
ORNlist = Join@ORNlist, INPdifferentiatorlistD + i; timecounter = timecounter + i;
Allcelltally = Append@Allcelltally, Length@MashlistD + Length@INPlistD + Length@ORNlistDD;
ORNtally = Append@ORNtally, Length@ORNlistDD;,
8340<D;

::loggdf, 100*
ORNtally@@160DD

Allcelltally@@160DD>,

:loggdf, 100*
ORNtally@@340DD

Allcelltally@@340DD>>, 8loggdf, -2, 2, 0.2<F;
plot30 = ListPlot@Map@First, t1D, Joined Ø True, AxesLabel Ø 8"Log@GDF11D", "%NCAM+"<,

AxesOrigin Ø 8-2, 0<, PlotRange Ø All, PlotStyle Ø 8Thickness@0.005D, Black<,
PlotLabel Ø Style@"Figure S23", Bold, LargeDD;

plot48 = ListPlot@Map@Last, t1D, Joined Ø True, AxesOrigin Ø 8-2, 0<,
PlotRange Ø All, PlotStyle Ø 8Thickness@0.005D, Blue<D;

ln_ =.; p0 =.; p1 =.; a0 =.; b0 =.; s0 =.; d0 =.; n0 =.; a1 =.; b1 =.; s1 =.; d1 =.; n1 = .;
p1 =.; p2 =.;
Show@plot30, plot48, AspectRatio Ø 1D

-1 0 1 2
Log@GDF11D

20

40

60

80

%NCAM+

Figure S23

Below the code is annotated for the purpose of explanation. We begin with the three stage model of an unbranched lineage, in which the second stage in
the INP and the last stage is the ORN. We assume that explantation of the OE into culture removes all feedback (secreted molecules will be diluted by the
medium).

Supplemental Material, Lander et al.

Below the code is annotated for the purpose of explanation. We begin with the three stage model of an unbranched lineage, in which the second stage in
the INP and the last stage is the ORN. We assume that explantation of the OE into culture removes all feedback (secreted molecules will be diluted by the
medium).

H*The main function of the code is to create a table of pairs of data points;
in each pair the first point has a particular value of loggdf in the first position,
and a value of the percentage of all BrdU labeled cells that is NCAM+ in the second

position. The first point in each pair corresponds to data at t=160 time steps,
and the second point t=340 time steps. Since our time steps will be 0.1 hours,
this means 16 and 34 hours after then end of the BrdU pulse,
which is the same as 18 and 36 hours after its beginning*L
t1 = TableBa0 = 5; b0 = 5; s0 = 5; d0 = 0;

n0 = 500; a1 = 6; b1 = 5; s1 = 6; d1 =
9.69*0.23* 10loggdf

1 + 0.23*10loggdf
; n1 = 4000;

p1 = 12; p2 = 14; ln_ = an + bn + sn + dn;

p0 = 0.2; p1 =
0.30

1 + 15*10loggdf
;

H*these define various parameter values:
p1 and p2 are the times of the start and stop of the pulse of BrdU.Hwe assume the

pulse occurs no more than 1 cell cycle after the start of the experimentL
For Mash1êSox2 and INP cells Hdenoted by subscripts 1 and 2, respectivelyL,

we separately specify lengths of the G1,S and G2M phases of the cell cycle. We
represent these by a,b,and s,respectively.Thus,the cell cyle length l = a+s+b.;

However,we shall consider that treatment with GDF11 potentially lengthens the cell
cycle by adding an extra time period into the G1 phase.We shall call this
d. Thus when GDF11 is present, the length of the cell cycle will be a+s+b+d.;
We let n1 and n2 represent the initial numbers of Mash1êSox2 cells and INPs respectively

The values chosen for n1 and n2 reflect the approximate ratio of cells that are Mash1 vs
INP and incorporate BrdU at the time of the pulse, about 12 hours in culture

The value chosen for d2 reflects the results of a pulse-
fix experiment Hone in which cells are fixed immediatedly after a short BrdU pulseL,
from which we may infer how much additional time GDF11 adds to the cell cycle,
as a function of GDF11. The parameter loggdf is means to represent log10@GDF11D

p1andp2represent replication probabilities for the two cell types. The
expression used for p1 is a Hill function, in which GDF11 feeds back on p1
without cooperativiey. The parameters within it are fit to the data manually

*L
Mashlist = RandomReal@8s0, b0 + s0<, n0D;

list1 = RandomReal@80, a1 + s1 + b1<, n1D;
H*We begin by generating some lists where every entry in the list is the cell cycle

position of a single cell. Note that we identify positions counting backwards from M-
phase. Thus a cell cycle position of s means a cell at the start of
G2. A cell cycle position of s+b=a cell at the start of S phase.

Since this is a pulse-chase experiment,
we start off our lists by defining a cohort of labeled cells that were
in S phase during the pulse.We do this by starting our lists at time=p2,

the end of the pulse,and picking out those that are BrdU labeled.For Mash1êstem cells,
this number atn1.For INPs,it is n2.

our starting list of labeled Mash1 cells has cell cycle positions from s to s+b,
because they are in S-phase

In generating the cell cycle positions of the INPs,
we take note of the fact that between plating and pulsing, existing INPs are
replicating and giving rise to neurons, and Mash1 cells are giving rise to INPs.

Supplemental Material, Lander et al.

replicating and giving rise to neurons, and Mash1 cells are giving rise to INPs.

list1 is just a list of random positions about an entire normal cell cycle.

*L
list4 = Select@list1 - p2, Ò1 < 0 &D + a1 + s1 + b1 + d1;

H*All cells in list1 are then advanced the time between
plating and the end of the pulse, the those with negative values
Hi.e. that have traversed ML are selected out and given the name "list4" *L

list6 = Join@list4, list4, Select@list1 - p2, Ò1 ¥ 0 ⅅ
H*list 4 is then duplicated Hto account for cell divisionL and
added back to the remainder of list 1. The result is called list 6.

list 6 represents the cell cycle positions of all the cells that
have been produced by INPs during the period up to the end of the pulse*L

INPlist = Select@list6, 0.5 + s1 - p2 + p1 § Ò1 § -0.5 + b1 + s1 &D;
H*To make the INPlist, we select from list 4 those cells whose positions lie between 0.5+

s2-p2+p1 and -0.5+b2+s2. The second condition says that they have to be at least
0.5 hours into S by the end of the pulse. The first condition says that,

at the start of the pulse they were within 0.5 hour of the end of S. So
these are all the cells in list6 that would get pulsed*L
ORNlist = 8<; ORNtally = 8<; Allcelltally = 8<; timecounter = 14; i = 0.1;
H*here we are just initializing some values we'll need later*L
Do@MASHdividerlist = Table@l0, 82 p0 Length@Select@Mashlist, Ò1 § 0 &DD<D;
MASHdifferentiatorlist = Table@l1, 82 H1 - p0L Length@Select@Mashlist, Ò1 § 0 &DD<D;
INPdividerlist = Table@l1, 82 p1 Length@Select@INPlist, Ò1 § 0 &DD<D;
INPdifferentiatorlist = Table@0, 82 H1 - p1L Length@Select@INPlist, Ò1 § 0 &DD<D;
Mashlist = Join@Select@Mashlist, Ò1 > 0 &D, MASHdividerlistD - i;
INPlist = Join@Select@INPlist, Ò1 > 0 &D, MASHdifferentiatorlist, INPdividerlistD - i;
ORNlist = Join@ORNlist, INPdifferentiatorlistD + i; timecounter = timecounter + i;
Allcelltally = Append@Allcelltally, Length@MashlistD + Length@INPlistD + Length@ORNlistDD;
ORNtally = Append@ORNtally, Length@ORNlistDD;,
8340<D;

H*The above Do loop does the following things for 340 time steps of "i" hours:

1. It counts up the number of Mash1 cells that crossed the
MêG1 boundary during the last time step. It multiplies that by p1,

and adds twice that number Hto account for divisionL into a list,
"MASHdividerlist" that represents progeny of MASH1 cells that remain
the same type. It gives them all the cell cycle position=l1,

because that is the position of a cell at the start of G1.
2. It creates a second list, "MASHdifferentiatorlist",

in the same way, using 1-p1 for the probability,
and setting the cells to position=l2, since they are now INPs.
3. Similar rules are used to create and INPdividerlist and an INP
differentiatorlist. However, when INPs differentiate into ORNs,
the ORNs are assigned an initial cell cycle position of "0". For these cells,
the decline over time in this number will provide the
information about how long ago each ORN differentiated.
4. Mashlist is now modified by removing from it any cells that have
traversed the G2M boundary, adding back in the cells in Mashdivider list,
and reducing every cell's index by i, to represent the passage of i hours.
5. The INPlist is modified in a similar way, but now there are two sources of INPs,

Mashdifferentiatorlist and INPdividerlist.
6. The ORNlist, which started as an empty set,

is modified by adding in the INPdifferentiatorlist. "i" is added to each entry
in this list so the entry counts upward the time since differentiation.
7. Timecounter is incremented by i.
8. ORNtally keeps track of the number of ORNs at each timepoint,

by appending Htimecounter, Length@ORNlistD< to ORNtally with every time step. *L
::loggdf, 100*

ORNtally@@160DD
Allcelltally@@160DD>, :loggdf, 100*

ORNtally@@340DD
Allcelltally@@340DD>>,

8loggdf, -2, 2, 0.2<F;
H*The above instructions, which end the Table command,

,
, *L

Supplemental Material, Lander et al.

H*The above instructions, which end the Table command,
create the pairs of points referred to at the start of the annotations,
over a range of @GDF11D from 10-2 to 100 ngêml, in steps of 0.2*L
plot30 = ListPlot@Map@First, t1D, Joined Ø True, AxesLabel Ø 8"Log@GDF11D", "%NCAM+"<,

AxesOrigin Ø 8-2, 0<, PlotRange Ø All, PlotStyle Ø 8Thickness@0.005D, Black<D;
plot48 = ListPlot@Map@Last, t1D, Joined Ø True, AxesOrigin Ø 8-2, 0<,

PlotRange Ø All, PlotStyle Ø 8Thickness@0.005D, Blue<D;
ln_ =.; p0 =.; p1 =.; a0 =.; b0 =.; s0 =.; d0 =.; n0 =.; a1 =.; b1 =.; s1 =.; d1 =.; n1 = .;
p1 =.; p2 =.;
Show@plot30, plot48, AspectRatio Ø 1D
H*The above commands simply plot to points,
connecting consecutive ones. The command in the penultimate line simply clears a lot of
definitions so they do not interefere with later work in the same Mathematica session*L

11 Spatial dynamics calculations (Fig. S24-S31)
Consider an epithelium of semi - infinite extent, so that to model diffusion of molecules we need only consider a single dimension (the apico-basal
dimension). Define a coordinate system in which x=0 represents the basal lamina, and x=-xmin represents the apical surface. x>0 then represents the
stroma underlying the epithelium. Assume that at the apical surface there are tight junctions, so that diffusing molecules may not leave, whereas at the
basal lamina there is no barrier to molecular diffusion.

If a secreted, diffusive molecule is made uniformly throughout the epithelium at constant rate v, we can calculate its steady state concentration along the
apicobasal axis. To do this we let d stand for the effective diffusion coefficient of the molecule, and k stand for its degradation rate constant. Because k
may be different in the epithelium versus the stroma, we use kL and kR to represent epithelial and stromal degradation rate constants, respectively, on the

"left" (epithelium) and "right" (stroma).
We may use a single ODE to represent the steady state solution for this situation, in which the variable a[x] is the concentration of the factor in space. In
order to have boundary conditions at two ends, we define a "dummy point", xmax>0, where we will set the concentration of the factor to zero. We will
later let xmax go to infinity, so that the result corresponds to an "open-ended" stroma.

sys = 8If@x > 0,
0 ã dL a''@xD + v - kL a@xD,
0 ã dR a''@xD + -kR a@xDD,
a'@-xminD ã 0, a@xmaxD ã 0<;

We can simplify this by defining some lumped parameters,

lL = kL êdL ; lR = kR êdR ; and n = v ë I2 lL
2 dLM.

The l parameters are length constants Iunits of length-1M and represent the inverse of the decay lengths of the diffusing factor
in the epithelium or stroma. l-1 may be understood as how far the average diffusing molecule travels before it is degraded.

Note that since lL
2 = kL êd, n = v ê2 kL;

Making these substitution, we may express the ODE as :

sys2 = 9IfAx > 0, 2 n lL
2 - lL

2 a@xD + a££@xD ã 0, -lR
2 a@xD + a££@xD ã 0E, a£@-xminD ã 0, a@xmaxD ã 0=;

To solve this discontinuous system, we solve separately in the epithelium and stroma, and the require continuity of a[x] and a'[x] at x=0. We get continuity
of a[x] at x=0 by defining a as the value of a[x] at x = 0, and using it as a boundary condition for both solutions.
 First we solve in the stroma:

rightsol =

a@xD ê. DSolveA90 ã a''@xD - lR
2 a@xD , a@0D ã a, a@xmaxD ã 0=, a@xD, xE êê Simplify êê Flatten

:
‰-x lR I-‰2 x lR + ‰2 xmax lRM a

-1 + ‰2 xmax lR
>

Now we let xmax go to infinity

rightsol1 = Assuming@n > 0 && xmax > 0 && lR > 0 && xmin > 0 && a > 0,
Limit@rightsol, xmax Ø InfinityDD êê FullSimplify

9‰-x lR a=
This simply gives the well known results that , in the region where the factor is not produced, its gradient is a simple exponential. Now we solve in the
epithelium

Supplemental Material, Lander et al.

leftsol1 = a@xD ê. DSolveA90 ã a''@xD - lL
2 a@xD + 2 n lL

2, a@0D ã a, a'@-xminD ã 0=, a@xD, xE êê
Simplify êê Flatten

:
‰-x lL II1 + ‰2 Hx+xminL lLM a - 2 I-1 + ‰x lLM I-1 + ‰Hx+2 xminL lLM nM

1 + ‰2 xmin lL
>

Finally we require continuity of a'[x] at x = 0

8leftsol2, rightsol2< = 8leftsol1, rightsol1< ê.
Flatten@Solve@HD@rightsol1, xD ã D@leftsol1, xDL ê. x Ø 0, aDD êê FullSimplify

::
2 ‰-x lL n I‰x lL I-1 + ‰2 xmin lLM lL - I-1 + ‰x lLM I-1 + ‰Hx+2 xminL lLM lRM

-lL + lR + ‰2 xmin lL HlL + lRL
>,

: 2 ‰-x lR n Sinh@xmin lLD lL

Sinh@xmin lLD lL + Cosh@xmin lLD lR
>>

Let us normalize x to lL, i.e. define a new length X = x lL, Xmin = xmin lL. Let's also define r to be the ratio lL êlR.

8leftsol3, rightsol3< =
8leftsol2, rightsol2< ê. 8x Ø XêlL, xmin Ø XminêlL< ê. lR Ø lL êr êê FullSimplify êê Flatten

:2 n -
2 n Cosh@X + XminD

Cosh@XminD + r Sinh@XminD,
2 ‰

-
X

r n r Sinh@XminD
Cosh@XminD + r Sinh@XminD>

We see that the parameter n may be factored out of both of these expressions. Thus, if we consider our units of concentration to be in units of n, we may
simply treat n as unity.

8leftsol4, rightsol4< = 8leftsol3, rightsol3< ê. n Ø 1;

WithA8exp1 = leftsol4, exp2 = rightsol4<, ManipulateA
Show@ Plot@Evaluate@exp1D , 8X, -Xmin, 0<, PlotRange Ø AllD, Plot@exp2, 8X, 0, 4<D,
PlotRange Ø All, AxesLabel Ø 8"distance", "concentration"<, AxesOrigin Ø 80, 0<D,
Style@"Figure S24", Bold, LargeD, 98r, 0.7<, 10-6, 10=, 88Xmin, 1<, 0, 4<EE

Figure S24
r

Xmin

-1 1 2 3 4
distance

0.2

0.4

0.6

0.8

1.0

concentration

Here we look just at the concentration of the factor in the epithelium, i.e. -Xmin<X<0, as a function of r and Xmin. The basement membrane will be on
the right; the apical surface on the left. Concentration is on the ordinate. The sliders allow us to vary the thickness of the epithelium, and r.

Supplemental Material, Lander et al.

Here we look just at the concentration of the factor in the epithelium, i.e. -Xmin<X<0, as a function of r and Xmin. The basement membrane will be on
the right; the apical surface on the left. Concentration is on the ordinate. The sliders allow us to vary the thickness of the epithelium, and r.

ManipulateB
ShowBPlot@0, 8X, -4, 0<, PlotRange Ø 80, 2<D, Plot@2, 8X, -Xmin, 0<, Filling Ø AxisD,

PlotB 2 -
2 Cosh@X + XminD

Cosh@XminD + r Sinh@XminD , 8X, -Xmin, 0<, PlotRange Ø 80, 2<, Filling Ø AxisFF,

Style@"Figure S25", Bold, LargeD, 98r, 0.2<, 10-6, 10=, 98Xmin, 1<, 10-6, 4=F

Figure S25
r

Xmin

Now that we know the concentration of a[x] in space, we next would like to calculate the amount of a[x] that cells in the epithelium "see". Obviously, how
much they see will depend on where they are in the epithelium. So we will consider two scenarios:
„ Scenario 1 : Cells that respond to a[x] are distributed uniformly in the epithelium

 In this case we need to calculate the average value of a[x]. That means integrating it from 0 to -Xmin and dividing by Xmin.

abar = AssumingBXmin > 0 && r > 0, FullSimplifyB n

Xmin
 ‡

-Xmin

0

2 -
2 Cosh@X + XminD

Cosh@XminD + r Sinh@XminD „XFF

2 n -
2 n Sinh@XminD

Xmin Cosh@XminD + Xmin r Sinh@XminD

We can equivalently express this as 2 n J1 - 1
Xmin H Coth@XminD+ r LN;

„ Scenario 2 : Cells that respond to a[x] are distributed in a fraction of the epithelium close to the basal surface.

Define k<1 as a fraction of the epithelium near the basal surface. To find the average value of a[x] within that zone, we integrate from - k Xmin to zero,
and divide by k Xmin

akappa = AssumingBXmin > 0 && r > 0, FullSimplifyB n

k Xmin
 ‡

-k Xmin

0

2 -
2 Cosh@X + XminD

Cosh@XminD + r Sinh@XminD „XFF

n I2 Xmin k +
2 H-Sinh@XminD+Sinh@Xmin-Xmin kDL

Cosh@XminD+r Sinh@XminD M
Xmin k

We can use Manipulate to observe how each one behaves

Supplemental Material, Lander et al.

We can use Manipulate to observe how each one behaves

WithB:term1 =
abar

n
, term2 =

akappa

n
>,

ManipulateAPlot@Evaluate@8Tooltip@term1, "abar"D, Tooltip@term2, "akappa"D<D,
8Xmin, 0, 6<, PlotRange Ø 80, Automatic<,
PlotStyle Ø 88Thick, Red<, 8Thick, Blue<<, AxesLabel Ø 8"Xmin", "perceived a"<D,
Style@"Figure S26", Bold, LargeD, 88r, 0.1<, 0, 5<, 98k, 0.1<, 10-6, 1=EF

Figure S26
r

k

0 1 2 3 4 5 6
Xmin

0.5

1.0

1.5

perceived a

Below are two extreme cases: In Fig. 27, r = 10, which means one tenth as much degradation in the stroma as in the epithelium. In Fig. 28, r = 0.001,
which means the stroma is virtually a perfect sink. In both cases, k was 0.1, i.e. for the blue curve, concentration is only sensed over the bottom of the
epithelium.

Supplemental Material, Lander et al.

WithB:term1 =
abar

n
, term2 =

akappa

n
>, Plot@

Evaluate@8Tooltip@term1 ê. r Ø 10, "abar"D, Tooltip@term2 ê. 8r Ø 10, k Ø 0.1<, "akappa"D<D,
8Xmin, 0, 6<, PlotRange Ø 80, Automatic<, PlotStyle Ø 88Thick, Red<, 8Thick, Blue<<,
AxesLabel Ø 8"Xmin", "perceived a"<, PlotLabel Ø Style@"Figure S27", Bold, LargeDDF

0 1 2 3 4 5 6
Xmin

0.5

1.0

1.5

2.0
perceived a

Figure S27

WithB:term1 =
abar

n
, term2 =

akappa

n
>, Plot@Evaluate@

8Tooltip@term1 ê. r Ø 0.001, "abar"D, Tooltip@term2 ê. 8r Ø 0.001, k Ø 0.1<, "akappa"D<D,
8Xmin, 0, 6<, PlotRange Ø 80, Automatic<, PlotStyle Ø 88Thick, Red<, 8Thick, Blue<<,
AxesLabel Ø 8"Xmin", "perceived a"<, PlotLabel Ø Style@"Figure S28", Bold, LargeDDF

0 1 2 3 4 5 6
Xmin

0.5

1.0

1.5

perceived a
Figure S28

To be systematic, let's calculate the sensitivity of concentration to position, for these cases:

8senabar, senakappa< = 8Sen@abar, XminD, Sen@akappa, XminD< êê FullSimplify

: -2 Xmin - r + r Cosh@2 XminD + Sinh@2 XminD
2 HCosh@XminD + r Sinh@XminDL HXmin Cosh@XminD + H-1 + Xmin rL Sinh@XminDL,
H-2 Xmin - r + r Cosh@2 XminD - HXmin k + rL Cosh@Xmin H-2 + kLD +

H-Xmin H-2 + kL + rL Cosh@Xmin kD + Sinh@2 XminD + Sinh@Xmin H-2 + kLD + Sinh@Xmin kD +
Xmin r Hk Sinh@Xmin H-2 + kLD - H-2 + kL Sinh@Xmin kDLLêH2 HCosh@XminD + r Sinh@XminDL
HXmin k Cosh@XminD + H-1 + Xmin k rL Sinh@XminD + Sinh@Xmin - Xmin kDLL>

Let's look at the same two scenarios for r:

Supplemental Material, Lander et al.

With@8term1 = senabar, term2 = senakappa<, Plot@Evaluate@
8Tooltip@term1 ê. r Ø 10, "senabar"D, Tooltip@term2 ê. 8r Ø 10, k Ø 0.1<, "senakappa"D<D,

8Xmin, 0, 2<, PlotRange Ø All, PlotStyle Ø 88Thick, Red<, 8Thick, Blue<<,
AxesLabel Ø 8"Xmin", "Sensitivity to Xmin"<, PlotLabel Ø Style@"Figure S29", Bold, LargeDDD

0.5 1.0 1.5 2.0
Xmin

0.0

0.4

0.6

0.8

1.0

Sensitivity to Xmin
Figure S29

Clearly, in this case (high r) the epithelium's sensitivity to its own size falls below 0.5 when it is less than 0.2 diffusion lengths thick

With@8term1 = senabar, term2 = senakappa<,
Plot@Evaluate@8Tooltip@term1 ê. r Ø 0.001, "senabar"D,

Tooltip@term2 ê. 8r Ø 0.001, k Ø 0.1<, "senakappa"D<D,
8Xmin, 0, 6<, PlotRange Ø 80, 2<, PlotStyle Ø 88Thick, Red<, 8Thick, Blue<<,
AxesLabel Ø 8"Xmin", "Sensitivity to Xmin"<, PlotLabel Ø Style@"Figure S30", Bold, LargeDDD

0 1 2 3 4 5 6
Xmin

0.5

1.0

1.5

2.0
Sensitivity to Xmin

Figure S30

Remarkably, when the stroma is a good sink (low r), if the concentration is averaged all over the epithelium, sensitivity falls below 0.5 at a little over 2
diffusion lengths. But if concentration is averaged over the first 10% of the epithelium, then sensitivity remains close to 1 for very large values of
epithelial thickness (up to 20 diffusion lengths [data not shown].
To plot the cartoons of the epithelium in Figure 7, the following code was used for each picture. The function "epitheliumplotBW" is defined, with a first
argument representing the epithelial thickness in diffusion lengths, and the second representing the value of r. The apicobasal axis is renamed "Y" here so
that the graphs plot in the right orientation. The basal surface appears at the top in the raw image.

epitheliumplotBW@height_, j_D :=

WithB8n = 1, Ymin = height, r = j, frameheight = 10<, DensityPlotB 2 n -
2 n Cosh@Y + YminD

Cosh@YminD + r Sinh@YminD,
8x, -10, 10<, 8Y, 0, -Ymin<, Frame Ø False, AspectRatio Ø Yminê10,
ColorFunction Ø FunctionB8x, y, z<, RGBColorB1 -

z

2
, 1 -

z

2
, 1 -

z

2
FF,

ColorFunctionScalingØ FalseFF
For example:

Supplemental Material, Lander et al.

GraphicsRow@8epitheliumplotBW@4, 0.001D, epitheliumplotBW@4, 10D<,
PlotLabel Ø Style@"Figure S31", Bold, LargeDD

12. Parameters: definitions, ranges and justifications
For ODE HnonspatialL calculations
vi, rate constant of division for cell type i, related to cell cycle length li by vi = ln2 li
pi, probability of replication Has opposed to differentitionL of cell type i
d, rate constant of death Hor sheddingL of terminal stage cell type
d, non - dimensionalizeddeath rate constant; d = d êv1
z, ratio of v0 to v1
t, non - dimensionalizedtime; t = t v1
ci, number of cells of type i
ci, number of cells of type i relative to number of cells of type 0
zi, number of cells of type i relative to the steady state value for cells of type i
g, feedback gain for feedback of terminal cell stage onto p1
g, non - dimensionalizedfeedback gain, g c0 Hused when c0 is constantL
j, non - dimensionalizedfeedback gain, g cinit Hused when c0 is not a constantL
h, feedback gain for feedback of terminal cell stage onto v1
h, non - dimensionalizedfeedback gain, h c0
j, feedback gain for feedback of terminal cell stage onto p0
k, feedback gain for feedback of terminal cell stage onto v0
w, lumped, nondimensionalparameter g v0 c0 êd
a, amplificationfactor, equal to number of terminal stage cells divided by number of progenitors

For spatial dynamics calculations
a@xD, concentrationof molecule "a" at point x in space
abar, concentrationof molecule "a" averaged over epithelial thickness
akappa, concentrationof molecule "a" averaged over a basal
region of the epithelium of thickness k times the epithelial thickness
v, rate of production of molecule "a", at any point in space, in units of concentrationper time

n, non - dimensionalizedproduction rate, n =
v

2 dL lL
2

=
v

2 kL

dL, effecitve diffusion coefficient of "a" in epithelium
dR, effecitve diffusion coefficient of "a" in stroma
kL, effective degradation rate constant of "a" in epithelium
kR, effective degradation rate constant of "a" in stroma

lL, diffusion length constant of "a" in epithelium = kL êd ; inversely related to diffusion length

lR, diffusion length constant of "a" in epithelium = kR êd ; inversely related to diffusion length
r, ratio of diffusion length constants lL êlR;
thus r = ratio of diffusion length in R to diffusion length in L. If

diffusion is the same in both compartments, then r = kL êkR
@ -xmin, 0D, spatial domain of the epithelium;
@ -Xmin, 0D,
non - dimensionalizedspatial domain of the epithelium Hspatial units of diffusion length in epitheliumL
@0, ¶D, spatial domain of the stroma;

Parameter ranges used in simulations

Supplemental Material, Lander et al.

Parameter Range Sampling
pi 0 to 1 Linear

d 10-2.5 to 10-0.5 Logarithmic

z 0.1 to 1 Logarithmic
g 0.01 to 10 Logarithmic

g 10-5 to 1 Logarithmic

h 0.01 to 10 Logarithmic
h 0.01 to 10 Logarithmic
j 0.01 to 10 Logarithmic
k 0.01 to 10 Logarithmic

Parameter range justifications

pi : Probabilities;
d : Turnover time for terminal stage cells wil vary between 3 to 316 cell cycle lengths for
cell type 1. If a cell cycle length is 18 hours, then this means 2.4 days to about 8 months;

z : Cell cycle of cell type 1 varies from 10 times faster to 10 times slower than than of the stem cell;
g, h, j, k : Ranges largely empirical to give coverage of regimes will Hill functions are near -
linear as well as near - saturated

g, h : Ranges empirical, covering ranges of g c0@¶D and h c0@¶D that are
observed in the outputs of simulations that use g and h

Supplemental Material, Lander et al.

