
JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 1994, p. 732-739 Vol. 32, No. 3
0095-1 137/94/$04.00+0
Copyright © 1994, American Society for Microbiology

Dilution Assay Statistics
LAWRENCE E. MYERS,'* LISA J. McQUAY,1 AND F. BLAINE HOLLINGER2

Research Triangle Institute, Research Triangle Park, North Carolina 27709,' and Division of Molecular Virology,
Baylor College of Medicine, Houston, Texas 770302

Received 28 July 1993/Returned for modification 28 October 1993/Accepted 13 December 1993

A parametric method of statistical analysis for dilution assays is developed in detail from first principles of
probability and statistics. The method is based on a simple product binomial model for the experiment and
produces an estimate for the concentration of target entities, a confidence interval for this concentration, and
an indicator of the quality of the assay called the p value for goodness of fit. The procedure is illustrated with
data from a virologic quantitative micrococulture assay used to quantify free human immunodeficiency virus
in clinical trials. The merits of the procedure versus those of nonparametric methods of estimating the dilution
inducing a 50% response rate are discussed. Advantages of the proposed approach include plausibility of the
underlying assumptions, ability to assess plausibility of specific experimental outcomes through their
likelihood, and plausibility of confidence intervals.

A dilution assay is an experiment for estimating the concen-
tration or frequency of target entities in a sample, in situations
in which accurate counts of the organism are too difficult or
costly to obtain. The original sample is divided into subsamples
at lower concentrations by dilution. These subsamples may be
further sampled to obtain replicate plates, tubes, or wells at
each concentration level. Each replicate is then scored for the
presence or absence of the target entity. This determination of
positivity or negativity of each replicate may require an auxil-
iary test or procedure. For instance, the presence of bacteria
may be deduced from the appearance of colonies after plates
have been incubated for a time. In one example that motivated
this work, it is desired to estimate the concentration of human
immunodeficiency virus type 1 (HIV-1) p24 antigen-producing
HIV-infected peripheral blood mononuclear cells (PBMCs) in
a blood sample from a patient. Positivity is based on p24
antigen assay results obtained after 2 weeks of incubation. For
our purposes, the key features of a dilution assay are that the
sample is tested at certain dilutions and that the basic summary
of each replicate is dichotomous or binary, with 1 representing
a positive result and 0 a negative result.
The idea of a dilution assay is to choose a sufficiently broad

range of dilutions that a transition from positive to negative
results is virtually ensured as one proceeds through the dilution
sequence. The dilutions at which the transition occurs contain
information on the concentration of target entities in the
original sample. We take estimation of this concentration as
the primary purpose of the assay.

Dilution assays are widely used in microbiology, for instance,
in the fields of public health (1), virology (9), and immunology
(16). A common practical application is to estimate the density
of coliform bacteria in water samples. We have encountered
several different dilution assays in our work with the National
Institute of Allergy and Infectious Diseases AIDS Virology
Quality Control Program for virology laboratories serving the
AIDS Clinical Trials Group. Specific cases include quantitative
micrococulture, plasma viremia, and neutralization assays (9).
The purpose of this report is to describe and illustrate a

parametric method of statistical analysis for dilution assays
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based on a simple probability model for experimental results.
The method produces an estimate of the concentration of
target entities, a confidence interval for this concentration, and
an indicator of the quality of the assay called the p value for
goodness of fit (PGOF). In describing the method, we briefly
review some fundamentals of probability and statistics, includ-
ing the likelihood function as a basis for inference. We also
compare the proposed parametric approach with competing
nonparametric methods, such as that of Spearman and Karber
and that of Reed and Muench, and indicate why we prefer the
proposed approach.
Our statistical approach is developed in Materials and

Methods, the first section of which establishes some notation
and terminology and describes a virologic quantitative micro-
coculture example of dilution assays which is used to quantify
free or blood-borne HIV in AIDS patients. The next sections
review the notions of sample space, probability, and likelihood;
develop the probability model used for inference; and give a
detailed description of statistical methods in terms of a prob-
ability or likelihood matrix whose entries give the probabilities
of experimental results as a function of the different possible
values of the true concentration of target entities. All statistical
calculations can be viewed as operations on this matrix. Results
illustrates the calculations for a simple example and presents
and discusses results for selected quantitative micrococulture
outcomes.
The merits of our procedure versus those of nonparametric

procedures for estimating the dilution inducing a 50% re-
sponse rate are analyzed in the Discussion. The most credible
nonparametric competitor appears from a literature review to
be the method of Spearman and Karber. A disadvantage of our
proposed parametric approach is its greater computational
complexity. Advantages of the proposed approach involve
plausibility of underlying assumptions, the ability to assess
plausibility of specific experimental outcomes through their
likelihood, and plausibility of confidence intervals. Specifically,
for the virologic applications mentioned above, patient sam-
ples are commonly encountered for which the proportion of
positive wells at each dilution assumes only the extreme value
of 0 or 1. In such cases, confidence intervals associated with
nonparametric procedures can be unreasonable, while confi-
dence intervals produced by our approach are valid.
The exposition in Materials and Methods is detailed and

traces the methodology to basic ideas of probability and
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TABLE 1. Summary of notation for QMC dilution assays

Parameter or variable Notation

Dilution ratio........................................ DR = 0.2
No. of dilution levels.................................D=.6
Dilution level index..............d=.1,2.......,.D
No. of replicate wells tested at level d............................ 2
Replicate well index..............j=.1,2....?.n.
Indicator variable of +/- outcome, jth well, level d....................................... . w,j= I for positive, 0 for negative
No. of positive wells at level d .....2.....................................Xd Wdl + W2 = O, 1, or 2
Generic outcome............y (x,x............ (
Proportion of positive wells at level d..................................... Xdld = 0, 0.5, or 1.0
Expected no. of PBMC/well at level d...................................... Ud =106 *DR"' -l
Concn of IUs/PBMC......................................C
Concn as IUs/106 PBMC ..................................IUPM = 10" * C
Expected no. of lUs/well at level d ................................... IUd = C * ud
Probability that a given well at level d is negative ......exp..................................q exp ( - IU,) = exp ( - C * u,)
Probability that a given well at level d is positive ....................................... pd 1 - qd 1 - exp ( - C *utU)

statistics. For the most part, this report is logically self-
contained. The Appendix contains a glossary of terms.

MATERMILS AND METHODS

Description and terminology for QMC dilution assays. The
proposed method for statistical analysis of dilution assay data
will be illustrated with a virologic quantitative micrococulture
(QMC) assay used to quantify free or blood-borne HIV in
patients participating in multicenter HIV clinical trials. Table
1 summarizes the main features of experimental design and
notation for the QMC dilution assay. Table 1 indicates general
symbols for dilution assays and the specific numeric values
assumed for the QMC assay. A more detailed description of
the QMC assay is in reference 9.
The QMC assay is performed, in duplicate, in a 24-well

tissue culture plate by using six fivefold dilutions, beginning
with 106 patient PBMC per well at the first dilution level, 2 x
105 PBMC per well at the second level, and so on. Viewing the
24-well plate as an array with four horizontal rows of six wells
and six vertical columns of four wells, each plate can accom-
modate two patient samples, allocating the top two rows to one
patient sample and the bottom two rows to the other patient
sample. Undiluted specimen is placed in the first column on
the left, 1:5 dilutions are in the second column, and so on, with
1:3125 dilutions in the last column on the right of the plate.
Each sample of patient cells is cocultured with phytohemag-
glutinin-stimulated normal donor PBMC for 14 days. Super-
natant from each well is then assayed for viral expression of
HIV-1 p24 antigen with standard HIV p24 enzyme immuno-
assays.
A key concept is the infectious unit (IU), an aggregate of

one or more infected cells whose presence in a well is necessary
and sufficient to produce a positive HIV-1 p24 result. The
target entity for QMC assays is the IU. T denotes the number
of these harbored by the patient, C denotes the concentration
of these per individual patient PBMC, and IUPM denotes the
concentration of these as lUs per million patient PBMC
(IUPM = 106 . C). The purpose of the QMC assay is to
estimate the concentration (C) of lUs per PBMC or, equiva-
lently, the concentration (IUPM) of lUs per 106 patient cells.
C and IUPM are examples of parameters, i.e., unknown
constants which affect the probability distribution of experi-
mental results. The critical assumptions which underlie the
mathematical model used below are that infectious units are
distributed purely at random within each sample, that detect-

able growth will occur in each well containing one or more lUs,
and that dilution errors are negligible.
Fundamental notions of probability and statistics. (i) The

sample space. The set of all possible outcomes for an experi-
ment is called the sample space. A subset of the sample space
is called an event. The sample space for a dilution assay is a
finite set which may be constructed as follows. For the QMC
assay, we may define 12 binary indicators to summarize
experimental outcomes for the 12 wells. If d = I to 6 indexes
the six dilution levels andj = 1 or 2 indexes the duplicate wells,
then define w,1j to be 1 or 0, according as the jth well at the dth
level is positive or negative for the p24 antigen. To connect this
with the geography of a 24-well plate, the w(0 variables
associated with the patient specimen allocated to the top two
rows of the plate would be configured as follows:

d = I
j= 1 wi1
j= 2 w2

d = 2
W2l
W-2

d = 3
W31
W32

d = 4
W41

w42

d = 5
W5

W52

d = 6
W61l
W62

Each of the 12 wells can conceivably be either positive or
negative, so there are 212 (=4,096) different possible experi-
mental outcomes. The size of the sample space can be reduced
by observing that the experiment is symmetric with respect to
the duplicate wells at any given dilution level. The only
relevant information at a given dilution level is the number of
positive wells, regardless of where they occur. The number (xe,)
of positive wells at the dth dilution level is the sum of the
binary indicators at that level, e.g.,xI = w11 + w12,,X = w2l +
w22, and so on. In this way, the QMC sample space can be
viewed as the set of all ternary sextuples (xI, x2, x3, X4, X5, X6),
where x,, is the number of positive wells among the duplicates
at the dth dilution level (xd = 0, 1, or 2). The reduced sample
space for the QMC assay contains 3" (=729) possible out-
comes. Specific numeric outcomes will be written without
parentheses and commas. For instance, 210000 indicates that
both wells are positive at the first level, one of two wells is
positive at the second level, and all wells are negative at lower
levels.

(ii) Probability. Three properties are sufficient to define a
probability function (p) on a finite sample space: P1, the
probability [p(A)] of any event (A) is between 0 and 1; P2, the
probability of the whole sample space is 1; P3, if A and B are
events with no outcomes in common, then the probability that
either event occurs is the sum of their individual probabilities
[p(A or B) = p(A) + p(B)]. Events A and B with no outcomes
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in common are called mutually exclusive; the occurrence of
either event precludes the occurrence of the other event.
P3 is the addition rule for probability and extends in an

obvious way to a finite number of mutually exclusive events,
such as distinct individual outcomes.
The multiplication rule of probability is related to the notion

of statistical independence. Events A and B are said to be
independent if

p (A and B) = p (A) p (B). (1)

(iii) Likelihood. To apply probability models to experimen-
tal data, it is useful to extend the probability notation to
explicitly display dependence on a parameter such as the
concentration of target entities. Let p(A Ic) [or p(ylc)] denote
the probability of event A [or outcome (y)], assuming that c is
the true concentration of target entities. (Strictly speaking, we
should write p({y}lc) instead of p(ylc), since probability is a
function of events and events are sets. } A mathematical model
forp(ylc) is derived from equation 1 and P3 in the section on
the probability model below.
Two distinct terms, probability and likelihood, can be ap-

plied to the function p(ylc), depending on the situation and
perspective. In common parlance, these terms are synonymous,
but in the domains of probability and statistics, an important
distinction exists between them. If the state of nature or true
concentration (c) is fixed and the outcome (y) is viewed as
varying over the sample space, then p(ylc) is called probability.
For the statistical perspective, at hand is a particular experi-
mental outcome (y), and we want to draw inferences about the
true concentration of target entities. Following R. A. Fisher
(6), attention is directed to the likelihood function, which is the
same function, p(ylc), but with outcome y fixed and parameter
c varying.

Probability model. The purpose of this section is to develop
a simple product binomial model for the likelihood, summa-
rized in equations 3 and 4 below, used to calculate the
probability of any dilution assay outcome for a given design
and a given value of C (or IUPM). The development is an
elaboration of Cochran (2) and uses only elementary proba-
bility.

(i) Coin tossing. Suppose we have a possibly biased coin with
probability p of falling heads and probability q = 1 - p of
falling tails. For any positive integer n, let n! equal the n-fold
product of all integers from n down to 1 [n! = n (n - 1) * (n
- 2) * ... .3 * 2 - 1] and define 0! as 1. Then the probability of
exactly k heads in n independent tosses of the coin is the
binomial probability

p (k heads inn tosses) = {n! / [k! (n - k)!] } *pk . qn - k (2)

The derivation is straightforward if it is assumed that the tosses
are independent and equation 1 and P3 are used. It follows
from equation 1 that any particular sequence of n tosses with
exactly k heads and n - k tails has probability pk *qn k, and
the factorial term in braces is simply the number of such
sequences.

(ii) Probability model for a single dilution. Consider a
dilution assay with n replicates at a single dilution. Letf denote
the fraction of the patient's total PBMC population which is
tested in each replicate. If the patient harbors T target entities,
then the probability that a given target entity is not in a given
replicate is 1 - f and the probability that none of the T target
entities is in a given replicate is q = (1 - f)T, according to
equation 1. The probability of a negative replicate is q.
The following approximation is critical and implies that we

do not need to knowf. By the first-order Taylor approximation

exp (-J) 1 - f, forf near zero, q is closely approximated by
exp (-f7T), which can, in turn, be rewritten as exp (- C * u),
where C is the patient's concentration of target entities per
PBMC and u is the number of PBMC per replicate.
By analogy with coin tossing, associating heads with positive

and tails with negative, the probability that exactly k of the n
replicates are positive and n - k are negative is given by
equation 2 with q = 1 - p = exp(- C u).

(iii) Probability model for a general dilution assay. By the
preceding argument, the probability that no target entities end
up in a given well at the dth dilution level is approximately

qd = exp(-C -Ud) (3)
Thus, qd is the probability that a given well at the dth dilution
level is negative, i.e., devoid of IUs and p24 antigen. Assuming
further that all wells are independent, equation 1 implies that
the overall likelihood for the experiment is the product (H)
over the six dilutions of binomial probabilities:

D

(4)I=nd! [Xd!(nd-xd)1 ]I*pd .qd -xd
d = I

qd = 1 - Pd is given in equation 3. The probability model
specified by equations 3 and 4 will be called the simple product
binomial model. An example calculation of the likelihood is
contained in Results.

Statistics. (i) Reduction to finite parameter space. The
possible values for IUPM range over a virtual continuum from
0 to 106. To simplify the discussion of statistical calculations,
we will treat the parameter space as finite and consisting of 0
and the 2,779 values obtained by taking integral powers of 1.01
from - 1,389 to 1,389. This finite parameter set of 2,780 values
includes 0, 0.000000995,..., 1,005,514. The positive parame-
ter values range approximately from 10-6 to 106, with each
succeeding term 1.01 times larger than its predecessor. The
loss of accuracy entailed by this reduction of the parameter
space is negligible.
The reason for reformulating the problem in terms of a finite

parameter space is that this permits a conceptually simple and
direct approach in terms of certain explicit vectors and matri-
ces. These vector and matrix elements of the problem, and
relationships among them, are indicated in Table 2.

For any outcome y = (xl, x2, x3, X4, X5, X6), we want (i) an
estimate of the IUPM in the original sample, (ii) a 95%
confidence interval for IUPM, and (iii) an indicator of the
quality of the data (x1, X2, x3, x4, x5, x6). We will approach these
problems in the order of their complexity: i, iii, and ii.

(ii) Probability or likelihood matrix. The probability (or
likelihood) matrix (P) is central to the statistical computation.
In our formulation of the problem, both the sample space and
the parameter space are finite sets. The QMC sample space
contains 729 outcomes, and the reduced parameter space has
2,780 values. The probability matrix has 729 rows correspond-
ing to the outcomes and 2,780 columns corresponding to the
parameter values. It has 2,026,620 entries.
The two correspondences, between rows and outcomes and

between columns and parameter values, are depicted in Table
2. The parameter values, in increasing order, appear as column
labels. To obtain an ordering for the 729 outcomes, each
sextuple can be viewed as a real number, beginning with
000000, 000001,..., and ending with 222221, 222222. With
these associations, the outcome corresponding to row i will be
denoted yi and the parameter value corresponding to columnj
will be designated cj. Hence, for the QMC example with six
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TABLE 2. Key vectors and matrices for likelihoc
with finite sample and parameter spac

sample
space

outcomes
Yi

PROBABILITY (LIKELIHOOD) MATRIX
P = [P[i,j]] = [p(y,Ic,)]

parameter values
C, C2 C,

sample RELATIVE LIKELIHOOD MATRIX
space R = [R [i, j ] = [P (yi cj) /p (yi ±) ]

outcomes

Yl P (Y1 c,) p (y1 CO) p (y1 C.)
p (y, 6,) p (y1 6) p (y. 6)

P (Y21 COc p (Y21 C2) P (Y21 C.)

PP(Y2162) P (Y21 62) P (Y21 62)

p (y. C0) p (y. C2) p (y. IC.)
Y._

P(Y.I. p(y.l. p(y.lc.)

fivefold dilutions in duplicate, m = 729, n

000000, Y2 = 000001, ... Y728 = 222221, Y729

0, c, = 0.000000995,. . ., C2,780 = 1,005,514.
row i (outcome yi) and column j (parameter cj
j] is the probability [p (yilcj)] of outcome yi, as

computed with equations 3 and 4. Any par
specifies a distribution of probability over the
Therefore, any column of the matrix adds to u

(iii) Estimation of C and IUPM by the meth4
likelihood. The dominant method of statistic;
the method of maximum likelihood (11). For
mental outcome, the maximum-likelihood esti
the parameter value which maximizes the pr
taining the outcome. Operationally, relative to
matrix of Table 2, the outcome y, uniquely id
the matrix. The ith row is searched to ident
where the maximum likelihood occurs. The
column is designated j(i). The corresponding F
Cffi) is the MLE of C and is designated ei. The
the likelihood at this maximum is called LMA
of IUPM is 106 * i.

(iv) P value for goodness of fit (PGOF). A h

the 729 outcomes are in fact very unlikely to o

of the value of C. To quantify this and to obtair
the data quality for a particular assay, a quanti
is used. The intent of PGOF is to identify rare
experimental outcomes which may indicate pi
lems with the assay. Examples of such patterns
(222000 would be much more likely) and large
220002.
The circumstance most favorable to the occ

that c; is the true concentration. PGOF is the F
experimental result as rare as or rarer than
assuming that the model is correct and the
equal to its MLE. Given an outcome yi, att
directed to column j(i) of the probability matri
which this outcome has maximum likelihood
probabilities in this column sum to unity. By P3
sum of all probabilities in the column which
LMAX[i]. PGOF[i] is usually less than I and e

is the most probable outcome for ei. Low value:
PGOF < 0.01, indicate rare or implausibl

id-based statistics results. If possible, any sample with a very low PGOF should be
ces retested.

(v) Confidence intervals for C and IUPM. There is a duality
MAXIMIZED between hypothesis testing and confidence intervals, whereby aLIKELIHOOD ~ hptei n
MEi= point cj is included in a 95% confidence interval for C just inc, p s i cofidncefo in

6 ip(YdI) case the null hypothesis H, that C = Cj, is not rejected at the 5%
p2p(Y2 I ) significance level. We use this duality to get a 95C confidencc

interval for C. Just as the method of maximum likelihood is the
c. p(Y.I6.) dominant method of statistical estimation, the preferred

method of testing hypotheses uses likelihood ratio tests
(LRTs) (reference 10, p. 48). The recipe described below
amounts to construction of confidence intervals for C via exact
LRTs. The appended glossary reviews the necessary hypothesis
testing concepts.

Construction of confidence intervals for C involves relative
likelihood matrix R (bottom of Table 2), as well as likelihood
matrix P. The relative likelihood is the likelihood normalized
relative to its maximum achievable value (11). R is obtained
from probability matrix P and the column vector LMAX of
maximized likelihoods via R[i, j] = P [i, j]/LMAX[i], i.e., each
row of the probability matrix is divided by the row maximum.
Note that R[i, j] c 1 and R[i, j(i)] = 1.

Given an outcome of Yi, to test H (C = cj) at the 0.05 level
with an LRT, we assume that H is true and calculate the LRT

= 2,780, Yi = p value, which is the probability of an outcome at least as
= 222222, cl = implausible as yi, as determined by the relative likelihood
For a specified function. To put it another way, this LRT p value is the
,), the entry P[i, probability of an outcome which is relatively not more likely
,suming C = cj, than that obtained. The p value calculation employs the jth
rticular column columns, P[ ., j] and R[ ., j], of both likelihood matrix P and
- sample space. relative likelihood matrix R. The column of the relative
.inity. likelihood matrix indicates which entries of P[., j] are
od of maximum summed. Specifically, by P3, the LRTp value is the sum of P[k,
al estimation is j] over all rows k (outcomes Yk) for which R[k, j] does not
a given experi- exceed R[i, j]. If thisp value exceeds 0.05, then H is accepted at
imate (MLE) is the 5% level and cj is included in the 95% confidence interval.
obability of ob- Historical notes. Sir Ronald Aylmer Fisher influenced the
the probability practice of statistics more than any other individual. Fisher's

entifies row i of 1922 treatise (6) was a pathbreaking work which defined and
tify the column investigated several important concepts, including likelihood,
index of this MLEs, and sufficiency. The paper also includes an interesting

)arameter value dilution assay example using the simple product binomial
value p (yilei) of model. Essentially the same model was used by Greenwood
LX[i]. The MLE and Yule (7), Eisenhart and Wilson (4), Finney (5), and

Strijbosch et al. (16). To a great extent, Fisher's 1922 paper
arge majority of (and the modern practice of parametric statistics) can be
occur, regardless summarized with the statement that likelihood is the basis of
i an indicator of inference. The text by Kalbfleisch (11) is in this spirit, has been
ity called PGOF acclaimed for the clarity of its presentation (14), uses many
- or implausible biologic examples, and is highly recommended to interested
rocedural prob- readers.
,include 111111
"skips," such as RESULTS

currence of yi is Example with singleton wells undiluted and diluted fivefold.
)robability of an We illustrate the calculation of statistical quantities with a
that obtained, small artificial example involving singleton wells, undiluted and

parameter C is diluted fivefold. The possible outcomes are 00 (both wells
tention is again negative), 01 (undiluted well negative, diluted well positive), 10
x of Table 2, for (undiluted well positive, diluted well negative), and I 1 (both
LMAX[i]. The wells positive). The parameter space will be taken to be {0,
,PGOF[i] is the 0.04, 0.2, 1, 5, 25}, i.e., we assume that it is somehow known in
ido not exceed advance that the true concentration must be one of these six
quals 1 only if yi values. This situation is not intended to correspond to any real
s of PGOF, e.g., experiment but is chosen for simplicity of computation. The
le experimental relevant matrices are in Table 3.

Yi p (Y., ci) P (Yl C2) p (y, C.)
Y2 P (Y2 CO P (Y. C2) P (Y2 C.)

Y. p (Y. CO P (Y. C2) p (Y. C.)
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The calculation of likelihood will be illustrated by verifying
that the entry in the second row and third column of the
likelihood matrix in Table 3 is 0.032, i.e., that the probability of

v < e. Noutcome 01 is 0.032 when IUPM is 0.2. We haven = n2=
XU o o (singleton wells), x, = 0, x2 = 1, so the likelihood reduces to

E q *P2. Also, qI = exp (-C.u1) = exp (-0.2-1) = 0.81873
Ux B o o 8 andp2 = 1 - q2 = 1 - exp( - 0.2 * 0.2) = I - exp( - 0.04) =

o ° 0.03921, so that q, *P2 = 0.032. The other entries of the
likelihood matrix are calculated similarly.

For each of the four outcomes, the MLE of IUPM is.o 6lo 6 o odetermined by the column which maximizes the likelihood over
_ Z ., c o o m the row corresponding to the outcome. For instance, for

o46 :r _ eooutcome01 (second row), the maximum likelihood of 0.067
S o;o_ ooccurs in the fourth column, so that the MLE is IUPM = I and
X,> E N 8 ^ x Fo LMAX = 0.067. PGOF is also 0.067, because there are no

Q Q O ° o o oother outcomes which are less likely.
The relative likelihood is calculated separately for each row

o > 3 e o. o o 8. as the likelihood relative to (divided by) its maximum achiev-
able value. For instance, the relative likelihood of outcome 01

a888 8 is obtained by dividing each likelihood value in the second row
v66:oo ooby 0.067.

Next we verify that the LRT p value is 0.213 for testing
o N 8 8 ^ 8 hypothesisH (IUPM = 0.2) when the experimental result is 01.

6 C5 Assume that H is true, so IUPM equals 0.2. The relative
.:N.e woNlikelihood (R) equals 0.481 when the IUPM is 0.2 and the

'Ic outcome is 01. Two other outcomes are relatively less likely: 10
6:.xoo o o (R = 0.337) and 11 (R = 0.007). Therefore, the LRT p value,

a) - 8 i.e., the probability (P) of outcomes which are not relatively
Co X more likely than 01, is 0.032 + 0.174 + 0.007 = 0.213. The

,, )o; parameter value C = 0.2 is therefore included in the confi-
II X , o °° e 8 dence set for the outcome 01, since the p value 0.213 exceeds
X_<ooo o 0.05. The confidence sets for each outcome are indicated at the

bottom right of Table 3. (The term confidence set is used here
o 6 666o ooorather than the term confidence interval because of the

artificial nature of the example, whereby we have assumed that
it was known in advance that the true IUPM must be one of the

6 6 6c: o o six values {0, 0.04, 0.2, 1, 5, 25}.)
Example with six fivefold dilutions in duplicate. Table 4

- o o o 8 8 contains selected results for the 0MC dilution assay design
> X :-. with six fivefold dilutions in duplicate which is used to quantify

HIV burden in patients participating in National Institute of
in>oso_ o Allergy and Infectious Diseases HIV clinical trials. The se-

E
- oo lected results are from proficiency testing conducted within the

AIDS Virology Quality Control Program. The table containso 6 o >results for all 22 outcomes with PGOFs of at least 0.2, as well
a) as all outcomes which have occurred with PGOFs below 0.001.
- > °o °o o o Confidence intervals are not given for the outcomes with
.> 6 6 6o PGOFs below 0.001, because these should be retested.
O No o. c°°The outcome 222222, with all wells positive, is censored, in

that if the dilution series were extended further, negative wells
.o would eventually occur. To obtain a finite concentration esti-

mate for such a censored case, a common approach is too
s m- 6 6.66postulate duplicate negative wells at the hypothetical next

0o r Q r N e > dilution level, i.e., 2222220. The corresponding IUPM estimate
X o-~ 1 6 o is 5,608. If such an approach is taken, it is important to
2> X ~ 6 6 6oodistinguish (flag) such censored cases in a data base. Ideally, if
e3o resources permit, the sample should be retested with a broader

design, so that results can be based on real rather than
m~o o oohypothesized data. If censored outcomes occur too frequently
H 8 8 8 8 with a fixed design for routine testing, then the design should

o 66 6 be changed.
The last outcome listed (101222) is virtually impossible for

all values of IUPM. It turned out that this outcome resulted-
from reversing the order of dilutions on the tray, so the

o laboratory software interpreted the highest dilution as the
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TABLE 4. Likely (PGOF > 0.2) and unlikely (PGOF < 0.001)
outcomes from National Institute of Allergy and Infectious Diseases
AIDS Virology Quality Control QMC Proficiency Testing Programa
Outcome

000000
100000
200000
210000
220000
221000
222000
222100
222200
222210
222220
222221
2222222
211000
221100
110000
222110
222211
201000
220100
222010
222201
222122
020100
012000
011100
120001
112100
001010
221002
022000
202110
111110
100101
021010
202101
111101
021001
022100
122200
221122
101222

MLE of IUPM

0.000
0.508
1.612
3.235
8.081

16.218
40.509
82.105

205.086
419.830

1,124.32
2,492.30

0c0d

5.648
28.313
1.105

143.339
747.676

2.815
14.109
70.721

361.621
423.141

1.312
1.274
1.265
2.511
3.084
0.807

40.416
1.780
8.843
3.043
1.607
1.764
8.830
3.042
1.764
2.232
4.956

95.294
4.770

PGOF

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
0.362795
0.360267
0.360197
0.347318
0.277522
0.254773
0.253046
0.245868
0.206533
0.000964
0.000932
0.000882
0.000692
0.000681
0.000571
0.000274
0.000262
0.000248
0.000177
0.000095
0.000087
0.000040
0.000030
0.000022
0.000011
0.000010
0.000007
0.000002
0.000000

L095"

0.000
0.026
0.248
0.639
1.138
2.759
7.101

13.969
35.594
70.721

182.003
368.889

1,017.83
1.041
6.493
0.190

32.545
164.765

0.596
2.678

13.558
68.641

UP95c

1.220
2.732
7.031

13.831
35.241
70.021

180.201
365.237

1,059.16
1,640.98
4,711.59

11,422.7
ood

17.737
88.908
3.538

463.754
2,125.48

9.016
45.195

231.095
1,371.88

a QMC assay design involves duplicate wells at each of six fivefold dilutions.

L095, lower 95% confidence limit.

cUP)5, upper 95% confidence limit.
d Censored outcome. Both the MLE and upper confidence limit are infinite.

See text.

lowest, the second highest as the second lowest, and so on.

That is, the actual experimental outcome was 222101.
This illustrates how an explicit probability model can be used

to advantage to identify unlikely outcomes for closer inspec-
tion and possible retesting.

In addition to PGOF, another natural indicator of assay

quality might involve precision as expressed by the confidence
interval width or the ratio of upper to lower confidence limits.
In fact, the probability distribution of the MLE e is known to
be skewed, while the distribution of the logarithm of e is much
more symmetric and closer to normal (2). This suggests that
the difference between the logarithms of the confidence inter-
val endpoints, or, equivalently, the ratio of the endpoints, is a

reasonable summary of precision.
These two aspects of quality, PGOF and the ratio of

confidence interval endpoints, are actually quite different.

Outcomes which are rarer in PGOF terms can be more
informative in confidence interval terms. This is illustrated by
comparison of the results in Table 4 for outcomes 210000 and
201000, which have respective PGOFs of 1.0 and 0.255 and
respective confidence interval ratios of 21.6 and 15.1. This
should not be interpreted as a commentary on the validity of
the PGOF as an indicator of assay quality, and laboratories
should not aspire to produce outcomes with low PGOFs.

DISCUSSION

The methodology presented here is applicable to any dilu-
tion assay producing binary (+/- or 1/0) data at the replicate
level. We have illustrated the method in terms of a virologic
quantitative micrococulture assay whose purpose is to quantify
HIV in infected patients as IUPM. Application to other assays
is straightforward, as long as they qualify as dilution assays with
dichotomous outcomes. For instance, the plasma viremia assay
(9) is similar to theQMC assay, employing duplicate wells at
each of six fivefold dilutions, except that a fixed volume of
patient plasma is input to the replicates at each level (0.4 ml at
the first dilution level, 0.08 ml at the second level, 0.016 ml at
the third level, and so forth.) In this case, Ud is defined as the
volume of plasma at the dth level and the concentration (C) of
target entities is defined relative to a unit volume of plasma
equal to the volume input to a well at the first dilution level,
i.e., 0.4 ml. The estimated concentration (C) will then be the
number of lUs per 0.4 ml, which is multiplied by 2.5 to obtain
the concentration ofIUs per milliliter. Neutralization assays
are treated similarly.

Competitors to the parametric method of analysis based on
the simple product binomial model include nonparametric
procedures going under the names of Spearman and Karber,
Reed and Muench, Dragstedt and Behrens, Litchfield and
Wilcoxon and moving average methods (5, 8). These methods
might be applied to dilution assays to estimate the ED50, i.e.,
the dilution at which 50% of the replicates would be expected
to be positive. Regarding the first three methods, in his classic
work, Finney (reference 5, p. 394) opines the following. "The
time has come for a change: under the most favorable condi-
tions, neither [the Reed-Muench nor the Dragstedt-Behrens]
method is as precise as the Spearman-Karber, and often
Spearman-Karber is markedly superior.... Except as part of
statistical history, both methods should be forgotten."

This opinion is echoed by Hamilton (reference 8, p. 75):
"Both large sample and small sample evaluations of these
estimators have clearly established the superiority of the
Spearman-Karber procedure. Apparently the continued use of
the Reed-Muench and/or Dragstedt-Behrens methods in some
areas ... is motivated only by tradition." Hamilton (reference
8, p. 70) also indicates that the Litchfield-Wilcoxon method is
outdated because the investigator fits regression lines "by eye."

Finney (reference 5, p. 435) also asserts that the underlying
assumptions are more realistic for the simple product binomial
model than for the nonparametric approaches: "The reader is
warned against attempting to use any analogue of the Drag-
stedt-Behrens, Reed-Muench or moving average method for
dilution assays. The exponential formula for the probability of
a sterile plate is not symmetric about any point, and these
methods are even less appropriate than with normal or logistic
sigmoid response curves."

It thus appears that the only serious competitor among these
nonparametric methods of estimating the ED50 is the Spear-
man-Karber estimate. If the equation (3) for the probability of
a positive response is accepted as a reasonable approximation,
then the ED50 is that number of PBMC per well such that exp
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(- C * ED50) = 0.5, i.e., such that C * ED50 = 0.69. This
relationship can be solved for either parameter in terms of the
other. If c is the MLE of C, then 0.69/e is the MLE of the ED50
and conversely. Hence, the two parameters, C and ED50, are
equivalent in that either can be obtained from the other, if
equation 4 is accepted. Although the ED50 and IUPM are, in
a sense, interchangeable, the IUPM seems inherently more
clinically relevant than the dilution at which 50% of the
replicates wells are expected to be negative.
We prefer the parametric approach based on the simple

product binomial model, essentially because it supports the
calculation of auxiliary quantities such as the PGOF and the
confidence interval for IUPM. The use of the probability
model to identify implausible experimental outcomes as cases
with low PGOFs is an important benefit of the parametric
approach. This assists laboratories in identifying individual
problem assays or procedural problems.
Three key assumptions underlying the simple product bino-

mial model were identified at the end of the QMC dilution
assay section in Materials and Methods. Like all mathematical
models, the simple product binomial model is an idealization
which does not exactly correspond to any real experiment.
However, the assumptions that mixing is homogeneous and
dilution errors are negligible are undeniably worthwhile goals
for laboratorians. We believe it is useful to subject dilution
assays to the PGOF criterion to detect assays that deviate
severely from these ideals.

In preparing the dilution series and replicate wells, it is
important to mix each sample adequately before subsampling
from it. Inadequate mixing prior to pipetting can allow settling
of cells to the bottom. This can induce a bias in subsampling,
depending on where the pipette is inserted in the sample, and
might produce a result such as 002000. This outcome has a
PGOF of 0.001791. The sample should be retested if possible.
For a laboratory using proper technique, 5% of the assays
would be expected to have PGOFs below 0.05. A laboratory
with an appreciably higher percentage of PGOFs below 0.05
should critically examine its procedures. A reasonable ap-
proach would be to monitor the percentage of assays with
PGOFs below 0.05 and periodically test the "in control"
hypothesis that PGOF is 0.05 or less. If the hypothesis is
rejected and the empirical proportion of PGOFs below 0.05 is
0.1 or larger, then search for an assignable cause.

In many cases, a confidence interval for the key parameter is
needed. This need provides an important justification for the
use of our parametric procedures in preference to the Spear-
man-Karber method. The Spearman-Karber standard error of
the ED50 is estimated to be 0 for any dilution assay outcome
with all empirical proportions equal to 0 or 1 (reference 8, p.
75). For instance, for the QMC example used in this report,
with duplicate wells at each of six fivefold dilutions, the
following outcomes would have 0 standard error: 200000,
220000, 222000, 222200, 222220, 000222, 020202. The textbook
Spearman-Karber confidence interval in these cases would
have a width of 0 for any level of confidence, which is absurd.
("Confidence intervals associated with the nonparametric pro-
cedures are probably not reliable for such coarse data" [refer-
ence 8, p. 84].) The confidence intervals produced by our
parametric approach are reasonable in all cases.
The method of summarizing dilution assays in terms of the

endpoint, i.e., the lowest level at which a positive result is
obtained, is imprecise and discards information. For instance,
it does not distinguish between QMC outcomes 221000 (IUPM
= 16.25, PGOF = 1.0) and 001000 (IUPM = 0.403, PGOF =
0.045).

It should be noted that the MLE of the concentration of

target entities is rather biased, systematically overestimating
the true concentration by a multiplicative factor as large as 1.5.
Roughly speaking, this arises because the logarithm of the
MLE of the concentration estimate has a fairly symmetric and
unbiased distribution for the true log concentration, so that
exponentiation induces asymmetry and bias. Does et al. (3)
have examined this bias issue in detail and recommend a
jackknife estimate of C, whereby the replicates are deleted one
at a time to generate n pseudosamples of size n - 1, where n
is the total number of experimental units in the original assay.
The MLE of C is calculated for each pseudosample, and these
n estimates are averaged to form the jackknifed estimate of C.
Computer programs for this calculation are available from R.
J. M. M. Does.

Loyer and Hamilton (12) compared several techniques of
confidence interval construction and recommended a tech-
nique of Sterne (15). They did not consider our method, which
is based on inversion of the LRT. We have conducted a study
(13) of several techniques of confidence interval construction
for dilution assays, including the method described in this
report, the method of Sterne (15), a Bayesian technique, and
some robust procedures. The methods were compared on the
basis of expected confidence interval width, assuming a distri-
bution for true patient concentration values which was based
on experience from HIV clinical trials. The LRT inversion
method described in this report was found to be the best
method among those considered, although the Bayesian pro-
cedure was nearly as good. The result is not surprising, since
LRTs are regarded by many statisticians as the general method
of choice (reference 10, p. 48).
When their use can be justified, parametric procedures are

more powerful and informative than nonparametric alterna-
tives. MLE applied to the simple product binomial model has
been widely used to estimate the concentration of target
entities in a dilution assay. We have built on this tradition by
using likelihood methods to obtain a confidence interval for
this concentration and an indicator of assay quality called the
PGOF. The statistical procedures are based on the likelihood
function, using MLE and LRTs. These methods are in the
mainstream of modern statistical practice.

APPENDIX

Glossary of probability and statistical terms.

binomial model: the probability model for the total number of heads
obtained in a certain number of repeated independent tosses of the
same coin

event: a subset of the sample space; a collection of outcomes (In this
report, all subsets of the finite sample space are regarded as events.)

function: a mapping from one set to another which uniquely associates
a member of the second set with each member of the first set

hypothesis test: a rule for deciding on the basis of data whether to
accept or reject a given hypothesis (Usually the rule is based on a test
statistic, with extreme values of the statistic leading to rejection. An
incorrect rejection is called a false-positive error. The determination of
extreme values depends on what false-positive error rate is tolerable in
making the decision.)

independent events: a collection of events such that the probability
that any subcollection of them will jointly occur is the product of the
individual probabilities of events in the subcollection

likelihood: probability viewed as a function of the parameters for a
fixed outcome
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LRTp value for testing the simple hypothesis H that C = co, given data
yo: the probability of a relative likelihood less than or equal to that
observed (y4), assuming that C = c0.

MLE of a parameter: the parameter estimate which maximizes the
likelihood that the given results will be obtained.

mutually exclusive events: a collection of events with the property that
no two of the events have any outcomes in common; i.e., the
occurrence of either event precludes the occurrence of the other event

95% confidence interval for a parameter: an interval produced by using
a statistical recipe, such that the recipe has a probability of at least 0.95
of producing an interval containing the true parameter value (Any
specific interval of numbers either contains or does not contain the
true value, so it would not make sense to assert that the interval has a
probability of 0.95 of containing the true value.)

(null) hypothesis: a tentatively entertained statement about a param-
eter

parameter: a number or vector which affects the distribution of
probability, e.g., the probability of heads in coin tossing

parameter estimate: a statistic whose purpose is to estimate a param-
eter

PGOF: the probability of results as rare as or rarer than those
obtained, assuming that the probability model is correct and the true
parameter value is equal to its MLE

probability: assignment of nonnegative numbers to events with the
properties that the probability of the whole sample space is unity and
the probability of a union of two mutually exclusive events is the sum
of their individual probabilities

p value for testing the simple hypothesis H that C = c0, given data yo
and test statistic t: the probability of an outcome as extreme as or more
extreme than that obtained, as determined by t(y), assuming that H is
true, i.e., the probability that t(y) is less than or equal to t(yo), assuming
that H is true

relative likelihood: the likelihood normalized relative to its maximum
achievable value, i.e., the likelihood divided by the maximized likeli-
hood

sample space: the set of all possible outcomes of an experiment (For
this report, finite sample spaces were assumed.)

simple hypothesis: a hypothesis asserting that a parameter has a
particular value, such as the hypothesis that C = 3

statistic: a number which can be computed from observational data

test statistic: a function of t(y) of outcome y such that small values of
t(y) are regarded as surprising or extreme if the null hypothesis is true
but are not surprising or extreme if the null hypothesis is false.
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