Supplementary Data

Accommodation of an N-(deoxyguanosin-8-yl)-2acetylaminofluorene adduct in the active site of human DNA polymerase 1: Hoogsteen or Watson-Crick base pairing?†

Kerry Donny-Clark‡, Robert Shapiro§, and Suse Broyde‡,*

[‡]Department of Biology and [§]Department of Chemistry, New York University, New York, NY, 10003, USA

Running Title: Bypassing a bulky major groove dG-AAF adduct in polu

[†]This research is supported by NIH CA75449 to S.B. and R.S., and by the National Science Foundation through TeraGrid resources provided by the San Diego Supercomputer Center. Support for computational infrastructure and systems management was also provided by NIH CA28038 to S.B. and R.S. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

*Corresponding author: Suse Broyde, Tel. (212) 998-8231, Fax (212) 995-4015, Email: broyde@nyu.edu

Structure	χ(°)	α ′(°)	β′(°)	γ′(°)
HG Unmodified	64.9	N/A	N/A	N/A
HG-AAF1	61.2	138.3	357.5	195.9
HG-AAF2	61.2	138.3	214.8	195.9
HG-AAF3	61.2	183.9	6.8	204.3
HG-AAF4	61.2	183.9	186.9	204.3
WC Unmodified 1	254.1	N/A	N/A	N/A
WC Unmodified 2	169.8	N/A	N/A	N/A
WC-AAF1	192.7	260.7	203.9	160.7
WC-AAF2	192.7	82.1	163.1	160.7
WC-AAF3	192.7	260.7	344.4	160.7
WC-AAF4	192.7	82.1	339.1	160.7

Table S1: Torsion angles for initial dG-AAF structures.

Table S2: Atom types, topologies, and partial charges for dG-AAF.

Atom Name	Atom Type	Topology Type	Partial Charge
Р	Р	М	1.135035
O1P	02	Е	-0.802764
O2P	02	Е	-0.802764
05'	OS	М	-0.494340
C5'	СТ	М	0.045138
H5'1	H1	Е	0.063861
H5'2	H1	Е	0.063861
C4′	СТ	М	0.180138
H4′	H1	Е	0.108174

O4′	OS	S	-0.450678
C1′	СТ	3	0.041166
H1′	H2	E	0.138883
C2′	СТ	В	-0.164433
H2'1	НС	E	0.105277
H2'2	НС	E	0.105277
N9	N*	В	0.075941
C4	СВ	S	-0.028326
N3	NC	S	-0.182524
C2	СА	В	0.431628
N2	N2	В	-0.919351
H21	Н	E	0.440359
H22	Н	Е	0.440359
N1	NA	В	-0.332623
H1	Н	Е	0.321305
C6	С	В	0.402236
O6	0	Е	-0.556027
C5	СВ	S	0.195340
N7	NB	Е	-0.537343
C8	СК	S	0.237276
N14	N*	В	0.048353
C18	С	В	0.504024
OAce	0	E	-0.549076
C19	СТ	3	-0.262061
H191	НС	Е	0.081507
H192	НС	Е	0.081507
H193	НС	Е	0.081507
C15	СА	S	0.017160
C14	CA	В	-0.309590

H14	НА	Е	0.232032
C13	СВ	S	0.026232
C12	СТ	3	-0.001508
H121	НС	Е	0.043781
H122	НС	Е	0.043781
C11	СВ	S	0.042214
C10	СА	В	-0.200667
H10	НА	Е	0.140661
С9	СА	В	-0.140804
Н9	НА	Е	0.139289
C7	СА	В	-0.156272
H7	НА	Е	0.142396
C3	СА	В	-0.179500
НЗ	НА	Е	0.152272
С	СВ	S	0.020935
C1	СВ	S	0.032255
C17	СА	В	-0.192244
H17	НА	Е	0.163321
C16	СА	S	-0.155998
H16	НА	Е	0.201481
C3′	СТ	М	0.118551
H3′	H1	Е	0.074903
03'	OS	М	-0.500524

Atom Name	Atom Type	Topology Type	Partial Charge
01G	O2	М	-0.93283
PG	Р	М	1.35374
O2G	O2	Е	-1.01588
O3G	O2	Е	-0.98337
O3B	OS	М	-0.53323
PB	Р	М	1.28778
O1B	O2	Е	-0.92812
O2B	O2	Е	-0.78988
O3A	OS	М	-0.56804
РА	Р	М	1.11343
01A	O2	Е	-0.70413
O2A	O2	Е	-0.85764
05'	OS	М	-0.52751
C5′	СТ	М	0.05539
H5′1	H1	Е	0.07799
H5′2	H1	Е	0.06574
C4′	СТ	М	0.42413
H4′	H1	E	-0.00175
C3′	СТ	3	0.54226
H3′	H1	E	-0.07755
C2′	СТ	В	-0.03056
H2′1	НС	E	0.00359
H2′2	НС	E	0.04303
O3′	ОН	S	-0.78480

Table S3: Atom types, topologies, and partial charges for dCTP⁺.

HO3'	НО	E	0.45144
O4′	OS	М	-0.57857
C1′	СТ	М	0.11238
H1′	H2	E	0.17464
N1	N*	М	0.11879
C6	СМ	М	0.06361
Н6	H4	E	0.23845
C5	СМ	М	-0.37365
Н5	HA	E	0.20924
C4	СА	М	0.46441
N4	N2	В	-0.93663
H41	Н	E	0.42684
H42	Н	E	0.48657
N3	N3	М	-0.14236
Н3	Н	E	0.31250
C2	С	S	0.30474
02	0	E	-0.56418

Table S4: AMBER parameters for dG-AAF and dCTP⁺.

Bond	$K_{\mathbf{r}} \text{ kcal/(mol Å}^2)$	r _{eq} Å
C-N3	255.5	1.41
CA-N*	449.0	1.42
CA-N3	325.6	1.36
СТ-СВ	331.3	1.51

Angle		K_{θ} kcal/(mol rad	lian ²)		θ degrees
CT-C-N*			68.2		115.38
N*-C-N3			68.3		113.84
N3-C-O			74.1		122.00
CM-CA-N3			67.4		117.17
N2-CA-N3			72.6		119.52
CA-CA-N*			69.3		119.50
CA-CB-CT			63.2		129.10
CB-CB-CB			64.5		108.05
CB-CB-CT			63.3		110.80
N*-CK-N*			72.9		119.87
НС-СТ-СВ			47.0		128.96
CB-CT-CB			65.5		102.11
C-N*-CA			65.6		125.26
CK-N*-C			65.6		117.13
CK-N*-CA			64.3		117.46
С-N3-Н			46.4		112.50
CA-N3-C			65.4		126.11
CA-N3-H			49.1		121.39
Torsion	# of paths	V _n /2 kcal/mol		γ degrees	n
X-CA-N*-X	4	4.2		180.0	2
X-CT-CB-X	6	0.0		0.0	2

Table S5: Hydrogen bond occupancies between the templating dG/dG-AAF and the incoming $dCTP/dCTP^+$ for the stable region (last 4 ns) of each trajectory. All bonds are represented as donor residue(donor heavy atom)...acceptor residue(acceptor heavy atom), followed by percent occupancy.

HG Unmodified	dCTP ⁺ (N3)dG(N7)	99.32
	$dCTP^+(N4)dG(N7)$	4.72
	dCTP ⁺ (N4)dG(O6)	99.72
HG-AAF1	dCTP ⁺ (N3)dG-AAF(N7)	1.00
HG-AAF2	None	
HG-AAF3	dCTP ⁺ (N4)dG-AAF(N7)	42.73
	dCTP ⁺ (N4)dG-AAF(O6)	4.28
	dCTP ⁺ (N4)dG-AAF(O6)	73.03
HG-AAF4	dCTP ⁺ (N3)dG-AAF(N7)	33.40
	dCTP ⁺ (N4)dG-AAF(N7)	16.93
	dCTP ⁺ (N4)dG-AAF(O6)	86.59
WC Unmodified 1	dCTP(N4)dG(O6)	92.95
	dG(N1)dCTP(N3)	99.93
	dG(N2)dCTP(N3)	63.11
	dG(N2)dCTP(O2)	99.93
WC Unmodified 2	dCTP(N4)dG(O6)	98.35
	dG(N1)dCTP(N3)	100.0
	dG(N2)dCTP(N3)	34.29
	dG(N2)dCTP(O2)	99.76
WC-AAF1	dCTP(N4)dG-AAF(O6)	58.78
	dG-AAF(N1)dCTP(N3)	81.70
	dG-AAF(N1)dCTP(O2)	68.80
	dG-AAF(N2)dCTP(N3)	8.03
	dG-AAF(N2)dCTP(O2)	99.98

WC-AAF2	dCTP(N4)dG-AAF(O6)	99.08
	dG-AAF(N1)dCTP(N3)	100.00
	dG-AAF(N1)dCTP(O2)	4.95
	dG-AAF(N2)dCTP(N3)	19.55
	dG-AAF(N2)dCTP(O2)	99.80
WC-AAF3	dCTP(N4)dG-AAF(O6)	93.75
	dG-AAF(N1)dCTP(N3)	100.00
	dG-AAF(N1)dCTP(O2)	18.05
	dG-AAF(N2)dCTP(N3)	11.75
	dG-AAF(N2)dCTP(O2)	100.00
WC-AAF4	dCTP(N4)dG-AAF(O6)	89.05
	dG-AAF(N1)dCTP(N3)	99.78
	dG-AAF(N1)dCTP(O2)	1.45
	dG-AAF(N2)dCTP(N3)	39.83
	dG-AAF(N2)dCTP(O2)	99.95

Table S6: Hydrogen bond occupancies between the incoming dCTP/dCTP⁺ and poli for the stable region (last 4 ns) of each trajectory. Amino acid numbering scheme taken from the ternary crystal structure(Nair et al., 2005), PDB ID: 2ALZ. All bonds are represented as donor residue(donor heavy atom)...acceptor residue(acceptor heavy atom), followed by percent occupancy.

HG Unmodified	ARG61(N1)dCTP ⁺ (O2G)	76.61
	ARG61(N1)dCTP ⁺ (O3G)	70.03
	ARG61(N2)dCTP ⁺ (O2G)	7.93
	ARG61(N2)dCTP ⁺ (O3B)	97.77
	ARG61(N2)dCTP ⁺ (O3G)	83.28
	dCTP ⁺ (O3')dCTP ⁺ (O1B)	100.00
	CYS37(N)dCTP ⁺ (O1G)	6.20
	CYS37(N)dCTP ⁺ (O3B)	39.30
	CYS37(N)dCTP ⁺ (O3G)	99.00
	LYS214(NZ)dCTP ⁺ (O1G)	3.50
	LYS214(NZ)dCTP ⁺ (O2G)	16.03
	LYS214(NZ)dCTP ⁺ (O3G)	11.57
	LYS214(NZ)dCTP ⁺ (O1G)	4.63
	LYS214(NZ)dCTP ⁺ (O2G)	17.18
	LYS214(NZ)dCTP ⁺ (O3G)	18.67
	LYS214(NZ)dCTP ⁺ (O1G)	2.28
	LYS214(NZ)dCTP ⁺ (O2G)	3.73
	LYS214(NZ)dCTP ⁺ (O3G)	4.75
	LYS77(NZ)dCTP ⁺ (O2A)	27.27
	LYS77(NZ)dCTP ⁺ (O2G)	26.05
	LYS77(NZ)dCTP ⁺ (O3A)	12.28
	LYS77(NZ)dCTP ⁺ (O2A)	45.25

HG Unmodified	LYS77(NZ)dCTP ⁺ (O2G)	27.92
	LYS77(NZ)dCTP ⁺ (O3A)	19.88
	LYS77(NZ)dCTP ⁺ (O2A)	25.83
	LYS77(NZ)dCTP ⁺ (O2G)	45.83
	LYS77(NZ)dCTP ⁺ (O3A)	11.78
	PHE38(N)dCTP ⁺ (O1B)	2.97
	PHE38(N)dCTP ⁺ (O2B)	60.37
	THR65(OG1)dCTP ⁺ (O1B)	99.97
	THR65(OG1)dCTP ⁺ (O3')	2.61
	TYR39(N)dCTP ⁺ (O3')	16.30
HG-AAF1	ARG61(N1)dCTP ⁺ (O2G)	79.30
	ARG61(N1)dCTP ⁺ (O3G)	80.60
	ARG61(N2)dCTP ⁺ (O2G)	3.08
	ARG61(N2)dCTP ⁺ (O3B)	39.08
	ARG61(N2)dCTP ⁺ (O3G)	96.23
	CYS37(N)dCTP ⁺ (O3B)	7.70
	CYS37(N)dCTP ⁺ (O3G)	99.90
	LYS77(NZ)dCTP ⁺ (O2A)	32.39
	LYS77(NZ)dCTP ⁺ (O2G)	29.20
	LYS77(NZ)dCTP ⁺ (O3A)	1.50
	LYS77(NZ)dCTP ⁺ (O3B)	11.85
	LYS77(NZ)dCTP ⁺ (O2A)	60.85
	LYS77(NZ)dCTP ⁺ (O2G)	32.55
	LYS77(NZ)dCTP ⁺ (O3A)	2.63

HG-AAF1	LYS77(NZ)dCTP ⁺ (O3B)	37.45
	LYS77(NZ)dCTP ⁺ (O2A)	28.88
	LYS77(NZ)dCTP ⁺ (O2G)	62.03
	LYS77(NZ)dCTP ⁺ (O3A)	1.73
	LYS77(NZ)dCTP ⁺ (O3B)	37.98
	PHE38(N)dCTP ⁺ (O1B)	3.78
	PHE38(N)dCTP ⁺ (O2B)	30.78
	THR65(OG1)dCTP ⁺ (O1B)	100.00
HG-AAF2	ARG61(N1)dCTP ⁺ (O2G)	12.83
	ARG61(N1)dCTP ⁺ (O3G)	97.62
	ARG61(N2)dCTP ⁺ (O1B)	21.48
	ARG61(N2)dCTP ⁺ (O3B)	39.60
	ARG61(N2)dCTP ⁺ (O3G)	87.98
	dCTP ⁺ (O3')TYR39(OH)	2.80
	CYS37(N)dCTP ⁺ (O3B)	37.03
	CYS37(N)dCTP ⁺ (O3G)	99.03
	LYS77(NZ)dCTP ⁺ (O2A)	16.95
	LYS77(NZ)dCTP ⁺ (O2G)	59.23
	LYS77(NZ)dCTP ⁺ (O3A)	1.62
	LYS77(NZ)dCTP ⁺ (O3B)	38.93
	LYS77(NZ)dCTP ⁺ (O2A)	43.23
	LYS77(NZ)dCTP ⁺ (O2G)	17.45
	LYS77(NZ)dCTP ⁺ (O3A)	2.78
	LYS77(NZ)dCTP ⁺ (O3B)	9.70

HG-AAF2	LYS77(NZ)dCTP ⁺ (O2A)	33.55
	LYS77(NZ)dCTP ⁺ (O2G)	68.37
	LYS77(NZ)dCTP ⁺ (O3A)	5.08
	LYS77(NZ)dCTP ⁺ (O3B)	22.63
	PHE38(N)dCTP ⁺ (O1B)	5.43
	PHE38(N)dCTP ⁺ (O2B)	81.00
	THR65(OG1)dCTP ⁺ (O1B)	99.43
	TYR39(OH)dCTP ⁺ (O3')	60.18
	TYR68(OH)dCTP ⁺ (O3G)	22.95
	ARG61(N1)dCTP ⁺ (O2G)	55.43
HG-AAF3	ARG61(N1)dCTP ⁺ (O3B)	2.98
	ARG61(N1)dCTP ⁺ (O3G)	78.90
	ARG61(N2)dCTP ⁺ (O2G)	5.05
	ARG61(N2)dCTP ⁺ (O3B)	99.77
	ARG61(N2)dCTP ⁺ (O3G)	45.30
	dCTP ⁺ (O3')dCTP ⁺ (O1B)	100.00
	CYS37(N)dCTP ⁺ (O3B)	23.55
	CYS37(N)dCTP ⁺ (O3G)	99.70
	LYS214(NZ)dCTP ⁺ (O1G)	34.30
	LYS214(NZ)dCTP ⁺ (O2G)	18.75
	LYS214(NZ)dCTP ⁺ (O1G)	30.70
	LYS214(NZ)dCTP ⁺ (O2G)	37.59

HG-AAF3	LYS214(NZ)dCTP ⁺ (O1G)	23.68
	LYS214(NZ)dCTP ⁺ (O2G)	18.60
	LYS77(NZ)dCTP ⁺ (O2A)	19.05
	LYS77(NZ)dCTP ⁺ (O2G)	28.43
	LYS77(NZ)dCTP ⁺ (O3A)	8.05
	LYS77(NZ)dCTP ⁺ (O2A)	51.58
	LYS77(NZ)dCTP ⁺ (O2G)	19.30
	LYS77(NZ)dCTP ⁺ (O3A)	17.85
	LYS77(NZ)dCTP ⁺ (O2A)	27.62
	LYS77(NZ)dCTP ⁺ (O2G)	52.20
	LYS77(NZ)dCTP ⁺ (O3A)	37.23
	PHE38(N)dCTP ⁺ (O1B)	7.95
	PHE38(N)dCTP ⁺ (O2B)	70.83
	THR65(OG1)dCTP ⁺ (O1B)	100.00
	THR65(OG1)dCTP ⁺ (O3')	2.62
	TYR39(N)dCTP ⁺ (O3')	28.78
	TYR39(OH)dCTP ⁺ (O2)	74.48
HG-AAF4	ARG61(N1)dCTP ⁺ (O2G)	9.30
	ARG61(N1)dCTP ⁺ (O3G)	97.80
	ARG61(N2)dCTP ⁺ (O1B)	68.28
	ARG61(N2)dCTP ⁺ (O3B)	3.78
	ARG61(N2)dCTP ⁺ (O3G)	97.39
	CYS37(N)dCTP ⁺ (O1G)	38.65
	CYS37(N)dCTP ⁺ (O3G)	99.83

HG-AAF4	LYS214(NZ)dCTP ⁺ (O1G)	3.58
	LYS214(NZ)dCTP ⁺ (O2G)	25.68
	LYS214(NZ)dCTP ⁺ (O1G)	3.48
	LYS214(NZ)dCTP ⁺ (O2G)	11.37
	LYS214(NZ)dCTP ⁺ (O1G)	3.88
	LYS214(NZ)dCTP ⁺ (O2G)	38.43
	LYS77(NZ)dCTP ⁺ (O2A)	27.55
	LYS77(NZ)dCTP ⁺ (O2G)	16.95
	LYS77(NZ)dCTP ⁺ (O3A)	1.70
	LYS77(NZ)dCTP ⁺ (O3B)	38.25
	LYS77(NZ)dCTP ⁺ (O2A)	34.88
	LYS77(NZ)dCTP ⁺ (O2G)	12.39
	LYS77(NZ)dCTP ⁺ (O3A)	1.59
	LYS77(NZ)dCTP ⁺ (O3B)	12.10
	LYS77(NZ)dCTP ⁺ (O2A)	34.45
	LYS77(NZ)dCTP ⁺ (O2G)	17.23
	LYS77(NZ)dCTP ⁺ (O3A)	2.33
	LYS77(NZ)dCTP ⁺ (O3B)	38.98
	PHE38(N)dCTP ⁺ (O2B)	4.23
	THR65(OG1)dCTP ⁺ (O1B)	99.98
WC Unmodified	ARG61(N1)dCTP(O2G)	26.39
1	ARG61(N1)dCTP(O3B)	5.48
	ARG61(N1)dCTP(O3G)	88.05
	ARG61(N2)dCTP(O1B)	7.30

WC Unmodified	ARG61(N2)dCTP(O2G)	2.98
1	ARG61(N2)dCTP(O3B)	99.55
	ARG61(N2)dCTP(O3G)	49.30
	dCTP(O3')dCTP(O1B)	2.77
	CYS37(N)dCTP(O1G)	1.32
	CYS37(N)dCTP(O3B)	46.50
	CYS37(N)dCTP(O3G)	67.65
	LYS214(NZ)dCTP(O1G)	10.73
	LYS214(NZ)dCTP(O2G)	5.39
	LYS214(NZ)dCTP(O3G)	8.55
	LYS214(NZ)dCTP(O1G)	5.07
	LYS214(NZ)dCTP(O2G)	7.80
	LYS214(NZ)dCTP(O3G)	10.64
	LYS214(NZ)dCTP(O1G)	9.43
	LYS214(NZ)dCTP(O2G)	8.61
	LYS214(NZ)dCTP(O3G)	6.73
	LYS77(NZ)dCTP(O2A)	28.39
	LYS77(NZ)dCTP(O2G)	23.16
	LYS77(NZ)dCTP(O3A)	8.25
	LYS77(NZ)dCTP(O2A)	45.23
	LYS77(NZ)dCTP(O2G)	25.43
	LYS77(NZ)dCTP(O3A)	11.65
	LYS77(NZ)dCTP(O2A)	23.11
	LYS77(NZ)dCTP(O2G)	65.30

WC Unmodified	LYS77(NZ)dCTP(O3A)	10.32
1	PHE38(N)dCTP(O1B)	1.77
	PHE38(N)dCTP(O2B)	77.18
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	88.16
	TYR39(OH)dCTP(O2)	4.02
WC Unmodified	ARG61(N1)dCTP(O2G)	46.57
2	ARG61(N1)dCTP(O3G)	78.35
	ARG61(N2)dCTP(O3B)	99.37
	ARG61(N2)dCTP(O3G)	49.90
	CYS37(N)dCTP(O3B)	45.10
	CYS37(N)dCTP(O3G)	86.89
	LYS214(NZ)dCTP(O1G)	19.21
	LYS214(NZ)dCTP(O2G)	18.62
	LYS214(NZ)dCTP(O3G)	11.10
	LYS214(NZ)dCTP(O1G)	19.17
	LYS214(NZ)dCTP(O2G)	16.34
	LYS214(NZ)dCTP(O1G)	12.00
	LYS214(NZ)dCTP(O2G)	15.10
	LYS77(NZ)dCTP(O2A)	18.00
	LYS77(NZ)dCTP(O2G)	53.79
	LYS77(NZ)dCTP(O2A)	22.13
	LYS77(NZ)dCTP(O2G)	19.33

WC unmodified	LYS77(NZ)dCTP(O2A)	52.75
2	LYS77(NZ)dCTP(O2G)	23.54
	LYS77(NZ)dCTP(O3A)	13.08
	PHE38(N)dCTP(O2B)	63.41
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	82.90
WC-AAF1	ARG61(N1)dCTP(O2G)	1.73
	ARG61(N1)dCTP(O3B)	7.60
	ARG61(N1)dCTP(O3G)	99.10
	ARG61(N2)dCTP(O1B)	37.65
	ARG61(N2)dCTP(O2G)	2.58
	ARG61(N2)dCTP(O3B)	99.70
	ARG61(N2)dCTP(O3G)	60.58
	dCTP(O3')dCTP(O1B)	8.43
	CYS37(N)dCTP(O3B)	62.70
	CYS37(N)dCTP(O3G)	50.10
	LYS214(NZ)dCTP(O1G)	26.59
	LYS214(NZ)dCTP(O2G)	5.55
	LYS214(NZ)dCTP(O3G)	17.77
	LYS214(NZ)dCTP(O1G)	23.62
	LYS214(NZ)dCTP(O2G)	3.68
	LYS214(NZ)dCTP(O3G)	39.55
	LYS214(NZ)dCTP(O1G)	23.45
	LYS214(NZ)dCTP(O2G)	5.73

WC-AAF1	LYS214(NZ)dCTP(O3G)	39.18
	LYS77(NZ)dCTP(O2A)	60.90
	LYS77(NZ)dCTP(O2G)	26.59
	LYS77(NZ)dCTP(O3A)	9.68
	LYS77(NZ)dCTP(O2A)	26.58
	LYS77(NZ)dCTP(O2G)	39.59
	LYS77(NZ)dCTP(O3A)	10.10
	LYS77(NZ)dCTP(O2A)	24.18
	LYS77(NZ)dCTP(O2G)	29.68
	LYS77(NZ)dCTP(O3A)	8.95
	PHE38(N)dCTP(O1B)	1.65
	PHE38(N)dCTP(O2B)	55.18
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	98.55
WC-AAF2	ARG61(N1)dCTP(O2G)	62.18
	ARG61(N1)dCTP(O3B)	5.80
	ARG61(N1)dCTP(O3G)	84.48
	ARG61(N2)dCTP(O1B)	7.88
	ARG61(N2)dCTP(O2G)	3.65
	ARG61(N2)dCTP(O3B)	98.78
	ARG61(N2)dCTP(O3G)	49.80
	dCTP(O3')dCTP(O1B)	1.55
	CYS37(N)dCTP(O1G)	2.70
	CYS37(N)dCTP(O3B)	61.05

WC-AAF2	CYS37(N)dCTP(O3G)	83.10
	LYS214(NZ)dCTP(O1G)	9.59
	LYS214(NZ)dCTP(O2G)	16.80
	LYS214(NZ)dCTP(O3G)	37.59
	LYS214(NZ)dCTP(O1G)	12.68
	LYS214(NZ)dCTP(O2G)	23.77
	LYS214(NZ)dCTP(O3G)	37.30
	LYS214(NZ)dCTP(O1G)	7.73
	LYS214(NZ)dCTP(O2G)	38.55
	LYS214(NZ)dCTP(O3G)	10.45
	LYS77(NZ)dCTP(O2A)	27.60
	LYS77(NZ)dCTP(O2G)	19.58
	LYS77(NZ)dCTP(O3A)	9.18
	LYS77(NZ)dCTP(O2A)	60.50
	LYS77(NZ)dCTP(O2G)	26.83
	LYS77(NZ)dCTP(O3A)	11.93
	LYS77(NZ)dCTP(O2A)	25.39
	LYS77(NZ)dCTP(O2G)	60.00
	LYS77(NZ)dCTP(O3A)	10.30
	PHE38(N)dCTP(O1B)	2.23
	PHE38(N)dCTP(O2B)	64.88
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	87.68

WC-AAF3	ARG61(N1)dCTP(O2G)	7.08
	ARG61(N1)dCTP(O3B)	38.75
	ARG61(N1)dCTP(O3G)	92.75
	ARG61(N2)dCTP(O1B)	27.39
	ARG61(N2)dCTP(O2G)	1.30
	ARG61(N2)dCTP(O3B)	99.33
	ARG61(N2)dCTP(O3G)	18.83
	CYS37(N)dCTP(O3B)	65.78
	CYS37(N)dCTP(O3G)	46.68
	LYS214(NZ)dCTP(O1G)	19.78
	LYS214(NZ)dCTP(O2G)	17.18
	LYS214(NZ)dCTP(O3G)	4.85
	LYS214(NZ)dCTP(O1G)	19.58
	LYS214(NZ)dCTP(O2G)	38.00
	LYS214(NZ)dCTP(O3G)	8.65
	LYS214(NZ)dCTP(O1G)	16.18
	LYS214(NZ)dCTP(O2G)	39.70
	LYS214(NZ)dCTP(O3G)	5.73
	LYS77(NZ)dCTP(O2A)	48.18
	LYS77(NZ)dCTP(O2G)	27.78
	LYS77(NZ)dCTP(O3A)	10.08
	LYS77(NZ)dCTP(O2A)	22.55
	LYS77(NZ)dCTP(O2G)	48.60
	LYS77(NZ)dCTP(O3A)	7.45

WC-AAF3	LYS77(NZ)dCTP(O2A)	27.80
	LYS77(NZ)dCTP(O2G)	22.95
	LYS77(NZ)dCTP(O3A)	7.40
	PHE38(N)dCTP(O1B)	2.18
	PHE38(N)dCTP(O2B)	93.58
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	91.45
	TYR39(OH)dCTP(O2)	65.98
WC-AAF4	ARG61(N1)dCTP(O2G)	64.28
	ARG61(N1)dCTP(O3B)	3.25
	ARG61(N1)dCTP(O3G)	87.62
	ARG61(N2)dCTP(O1B)	1.43
	ARG61(N2)dCTP(O2G)	1.80
	ARG61(N2)dCTP(O3B)	99.62
	ARG61(N2)dCTP(O3G)	79.70
	dCTP(O3')dCTP(O1B)	2.73
	CYS37(N)dCTP(O1G)	4.05
	CYS37(N)dCTP(O3B)	59.03
	CYS37(N)dCTP(O3G)	98.23
	LYS77(NZ)dCTP(O2A)	38.60
	LYS77(NZ)dCTP(O2G)	59.65
	LYS77(NZ)dCTP(O3A)	7.70
	LYS77(NZ)dCTP(O2A)	40.00
	LYS77(NZ)dCTP(O2G)	18.68

WC-AAF4	LYS77(NZ)dCTP(O3A)	37.39
	LYS77(NZ)dCTP(O2A)	28.80
	LYS77(NZ)dCTP(O2G)	45.30
	LYS77(NZ)dCTP(O3A)	11.65
	PHE38(N)dCTP(O1B)	1.62
	PHE38(N)dCTP(O2B)	57.43
	THR65(OG1)dCTP(O1B)	100.00
	TYR39(N)dCTP(O3')	62.60

Table S7: Hydrogen bond occupancies between the templating dG/dG-AAF and polt for the stable region (last 4 ns) of each trajectory. Amino acid numbering scheme taken from the ternary crystal structure(Nair et al., 2005), PDB ID: 2ALZ. All bonds are represented as donor residue(donor heavy atom)...acceptor residue(acceptor heavy atom), followed by percent occupancy.

HG Unmodified	dG(N2)dG(O2P)	3.22
	LYS60(NZ)dG(O1P)	3.77
	LYS60(NZ)dG(O1P)	9.18
	LYS60(NZ)dG(O1P)	5.90
	SER307(OG)dG(O1P)	32.52
	SER307(OG)dG(O2P)	64.88
HG-AAF1	dG-AAF(N2)dG-AAF(O2P)	59.73
	dG-AAF(N2)dG-AAF(O5')	1.33
	GLN59(NE2)dG-AAF(O3')	37.18
	TYR61(OH)dG-AAF(O1P)	77.88
HG-AAF2	dG-AAF(N2)dG-AAF(O2P)	61.60
	LYS309(NZ)dG-AAF(O1P)	39.03
	LYS309(NZ)dG-AAF(O2P)	16.23
	LYS309(NZ)dG-AAF(O1P)	11.40
	LYS309(NZ)dG-AAF(O2P)	10.98
	LYS309(NZ)dG-AAF(O1P)	11.48
	LYS309(NZ)dG-AAF(O2P)	38.40
	SER307(OG)dG-AAF(O1P)	97.10
HG-AAF3	dG-AAF(N2)dG-AAF(O2P)	3.08
	HIS354(NE2)dG-AAF(O1P)	7.10
	HIS354(NE2)dG-AAF(O2P)	17.20
	TYR355(OH)dG-AAF(O2P)	2.43

HG-AAF4	LYS309(NZ)dG-AAF(O1P)	5.93
	LYS309(NZ)dG-AAF(O1P)	8.43
	LYS309(NZ)dG-AAF(O1P)	6.78
WC Unmodified 1	ARG347(N1)dG(O2P)	52.73
	ARG347(N2)dG(O2P)	88.50
	dG(N2)GLN59(OE1)	97.84
	SER307(OG)dG(O3')	1.32
WC Unmodified 2	dG(N2)GLN59(OE1)	76.76
	dT5(O5')dG(N7)	13.90
	TYR61(OH)dG(O1P)	13.76
WC-AAF1	ARG347(N2)dG-AAF(O2P)	1.39
	dG-AAF(N2)GLN59(OE1)	97.78
	GLN59(NE2)dG-AAF(O3')	65.80
	HIS354(NE2)dG-AAF(O2P)	3.65
	LYS60(NZ)dG-AAF(O1P)	39.50
	LYS60(NZ)dG-AAF(O5')	3.18
	LYS60(NZ)dG-AAF(O1P)	11.95
	LYS60(NZ)dG-AAF(O5')	3.28
	LYS60(NZ)dG-AAF(O1P)	11.90
	LYS60(NZ)dG-AAF(O5')	2.00
	SER307(OG)dG-AAF(O1P)	20.60
	SER307(OG)dG-AAF(O2P)	88.03

WC-AAF2	ARG347(N1)dG-AAF(O1P)	1.05
	ARG347(N1)dG-AAF(O2P)	59.75
	ARG347(N1)dG-AAF(O5')	6.45
	ARG347(N2)dG-AAF(O1P)	30.59
	ARG347(N2)dG-AAF(O2P)	51.28
	ARG347(N2)dG-AAF(O5')	1.08
	dG-AAF(N2)GLN59(OE1)	97.10
	SER307(OG)dG-AAF(O1P)	92.05
	SER307(OG)dG-AAF(O2P)	3.25
	SER307(OG)dG-AAF(O5')	4.59
WC-AAF3	dG-AAF(N2)GLN59(OE1)	92.73
	GLN59(NE2)dG-AAF(O3')	19.78
	LYS309(NZ)dG-AAF(O1P)	3.59
	LYS309(NZ)dG-AAF(O2P)	7.88
	LYS309(NZ)dG-AAF(O1P)	3.25
	LYS309(NZ)dG-AAF(O2P)	3.60
	LYS309(NZ)dG-AAF(O1P)	4.40
	LYS309(NZ)dG-AAF(O2P)	3.62
	LYS60(NZ)dG-AAF(O1P)	12.03
	LYS60(NZ)dG-AAF(O3')	2.08
	LYS60(NZ)dG-AAF(O5')	6.55
	LYS60(NZ)dG-AAF(O1P)	10.70
	LYS60(NZ)dG-AAF(O3')	2.80

WC-AAF3	LYS60(NZ)dG-AAF(O5')	4.80
	LYS60(NZ)dG-AAF(O1P)	10.28
	LYS60(NZ)dG-AAF(O3')	2.55
	LYS60(NZ)dG-AAF(O5')	3.80
	SER307(OG)dG-AAF(O2P)	1.93
	SER307(OG)dG-AAF(O3')	1.20
WC-AAF4	ARG347(N2)dG-AAF(O2P)	4.37
	dG-AAF(N2)GLN59(OE1)	99.80
	LEU62(N)dG-AAF(OAce)	1.63
	LYS60(NZ)dG-AAF(O3')	1.77
	LYS60(NZ)dG-AAF(O3')	1.93
	LYS60(NZ)dG-AAF(O3')	2.63
	SER307(OG)dG-AAF(O1P)	43.37
	SER307(OG)dG-AAF(O2P)	21.62
	TYR61(N)dG-AAF(OAce)	5.60

	Mg _A -Asp126 Οδ1 (Å)	Mg _A -Gln127 Οε2 (Å)	Mg _A -Asp34 Οδ2 (Å)	Mg _A -O3' (Å)	Mg _A -dCTP Ο1α (Å)	$Mg_A - H_2O$ (Å)
Initial Model ^a	3.14	2.32	2.85	2.84	2.37	2.14
HG Unmodified	1.9±0.05	1.9±0.04	1.9±0.05	2.1±1.04	2.0±0.23	2.0±0.06
HG-AAF1	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.09	3.8±0.16	2.0±0.05
HG-AAF2	1.9±0.05	1.9±0.06	1.9±0.05	8.4±1.42	3.1±0.33	2.0±0.06
HG-AAF3	1.9±0.05	1.9±0.04	1.9±0.05	5.3±0.93	2.2±0.25	2.0±0.07
HG-AAF4	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.09	2.0±0.09	2.0±0.07
WC Unmodified 1	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.09	2.0±0.26	2.0±0.06
WC Unmodified 2	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.08	2.0±0.13	2.0±0.07
WC-AAF1	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.09	2.2±0.38	2.0±0.06
WC-AAF2	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.09	2.0±0.12	2.0±0.06
WC-AAF3	1.9±0.04	2.0±0.30	1.9±0.05	2.1±0.09	3.3±0.34	2.0±0.06
WC-AAF4	1.9±0.05	1.9±0.04	1.9±0.05	2.1±0.08	1.9±0.17	2.0±0.07

Table S8: Mg^{2+} coordination distances for the stable region (last 4 ns) of each trajectory, presented as mean values ± standard deviation.

^a Coordination distances in the initial model are as in crystal structure PDB ID: 2ALZ, except for the primer terminal O3', which has been modeled due to its absence in the crystal.

	Mg _B - Asp126 Οδ2 (Å)	Mg _B -Asp34 Οδ1 (Å)	Mg _B -Leu35 O (Å)	Mg _B -dCTP Ο1α (Å)	$\begin{array}{c} Mg_B\text{-}dCTP \ O1\gamma \\ (\text{\AA}) \end{array}$	Mg _B -dCTP Ο2β (Å)
Initial Model ^a	2.08	2.15	2.12	2.36	2.37	2.12
HG Unmodified	1.9±0.05	1.9±0.04	1.9±0.05	3.0±0.43	1.8±0.04	1.9±0.05
HG-AAF1	1.9±0.52	1.9±0.05	2.0±0.08	2.0±0.13	1.8±0.04	1.9±0.05
HG-AAF2	1.9±0.53	1.9±0.05	2.0±0.07	2.0±0.17	1.8±0.04	1.9±0.06
HG-AAF3	1.9±0.05	1.9±0.05	1.9±0.06	2.6±0.32	1.8±0.04	1.8±0.05
HG-AAF4	1.9±0.05	1.9±0.04	1.9±0.05	3.2±0.24	1.8±0.04	1.8±0.04
WC Unmodified 1	1.9±0.05	1.9±0.04	1.9±0.05	2.8±0.35	1.8±0.04	1.9±0.05
WC Unmodified 2	1.9±0.05	1.9±0.04	1.9±0.05	2.8±0.26	1.8±0.04	1.9±0.05
WC-AAF1	1.9±0.05	1.9±0.04	1.9±0.70	2.5±0.44	1.8±0.04	1.9±0.06
WC-AAF2	1.9±0.05	1.9±0.04	1.9±0.05	2.9±0.39	1.8±0.04	1.9±0.05
WC-AAF3	1.9±0.05	1.9±0.05	2.0±0.07	1.9±0.12	1.8±0.04	2.0±0.08
WC-AAF4	1.9±0.05	1.9±0.05	1.9±0.05	3.0±0.25	1.8±0.03	1.9±0.05

Table S8 continued: Mg^{2+} coordination distances for the stable region (last 4 ns) of each trajectory, presented as mean values ± standard deviation.

^a Coordination distances in the initial model are as in crystal structure PDB ID: 2ALZ, except for the primer terminal O3', which has been modeled due to its absence in the crystal.

Table S9: Torsion angles χ , α' , β' , γ' , the pseudorotation phase angle *P* of the sugar pucker of dG/dG-AAF, and the in-line attack angle O3'-P α -O3 α for the stable region (last 4 ns) of each trajectory. Data presented as mean ± standard deviation.

Structure	χ(°)	P (°)	α'(°)	β'(°)	γ′(°)	03'-Pa-O3a(°)
HG Unmodified	30.8±15.3	102.7±15.9	N/A	N/A	N/A	161.8±5.2
HG-AAF1	52.2±9.2	50.4±16.3	127.3±13.2	171.8±13.3	316.0±10.4	70.22±7.5
HG-AAF2	2.6±21.4	175.2±23.7	83.7±16.7	243.9±9.6	192.7±13.4	87.7±26.62
HG-AAF3	52.2±11.7	159.0±13.4	215.0±9.7	63.7±10.7	203.0±10.1	119.8±18.0
HG-AAF4	56.9±8.2	64.5±18.1	235.1±9.9	191.6±12.3	318.5±17.8	124.4±10.3
WC Unmodified 1	199.1±15	156.2±31.4	N/A	N/A	N/A	167.2±5.6
WC Unmodified 2	247.2±25	164.4±32.0	N/A	N/A	N/A	167.7±5.4
WC-AAF1	195.0±8.7	137.7±13.5	239.8±11.2	258.9±17.5	186.0±10.9	170.2±5.2
WC-AAF2	175.4±15.6	120.3±25.8	130.3±11.6	126.7±12.0	159.2±9.5	165.2±5.8
WC-AAF3	200.8±9.8	110.5±23.6	241.0±93	72.0±17.7	185.7±11.9	172.2±4.3
WC-AAF4	171.0±18.7	82.11±31.9	134.9±14.9	306.0±18.5	157.2±10.6	163.4±5.4