Supplementary Figure 1

Fetal gene upregulation by 1-wk TAC is significantly increased in mice lacking RGS2. ANP(Nppa) /BNP(Nppb) - A-type and B-type natriuretic peptide; β -MHC (Myh7) - beta myosin heavy chain. Reduced expression of SERCA2a (Atp2a2a) was similar in both groups. * p<0.001 versus Sham; † p<0.001 versus TAC-1wk RGS2^{+/+} and Sham; ‡ p<0.01 versus corresponding (within genotype) Sham (n=3-8 for each group).

Supplementary Figure 2A

Invasive hemodynamic data in mice after 48-hrs of TAC. The increase in afterload reflected by peak LV pressure, Ea, and systemic vascular resistance (SVR) was similar in both genotype groups (n=3-7 for each group). Cardiac output and stroke volume change was also similar in both groups. (deleted) None of these parameters yielded a significant interaction term by 2 way ANOVA (TAC×genotype).

Supplementary Figure 2B

Summary echocardiographic data in RGS2^{+/+} mice, and RGS2^{-/-} mice subjected to 48-hr TAC. The latter group was further co-treated with the PLC β inhibitor U73122, or its inactive analog U73433 as a control. Inhibition of PLC β prevented early chamber dilation (LV-diastolic diameter: LV-Dd), wall thickening, and reduced fractional shortening (FS) in the RGS2^{-/-} hearts (n=4-9 in each group). * p<0.01 versus Sham for each corresponding genotype.

39

Supplementary Figure 3

Expression of calcineurin (Cn), phosphorylated CaMKII and ERK1/2 in mice subjected to 6-wk swimming exercise in $RGS2^{+/+}$ and $RGS2^{-/-}$ groups. Unlike with TAC, none of these signaling cascades were stimulated by swimming in either of the genotype groups (n=3-6 in each group).

Supplementary Figure 4A

Example of normal PKG1- α distribution in myocyte from RGS2^{-/-} heart showing diffuse localization as observed in control (RGS2^{+/+}) cells under rest conditions.

Supplementary Figure 4B.

Ponceau stains of membranes confirming equal protein loading for particulate and soluble fractions for the analysis displayed in Figure 7D.

Supplementary Figure 2A

Supplementary Figure 2B

RGS2+/+

RGS2-/-

Supplemental Figure 3

Supplementary Figure 4A

Supplementary Figure 4B

Supplementary Table 1 Baseline Characteristics (Body Weight, Heart Weight and

Age	4-5 month	
Genotype	RGS2 ^{+/+}	RGS2 ^{-/-}
	(n = 10)	(n = 12)
BW (g)	26.2 ± 0.5	25.2 ± 0.5
HW/TL (g/cm)	63.5 ± 1.7	63.5 ± 1.7
LV-Dd (mm)	3.26 ± 0.04	3.22 ± 0.05
LV-Ds (mm)	1.32 ± 0.03	1.30 ± 0.03
WT (mm)	0.84 ± 0.01	0.84 ± 0.01
%FS	59.0 ± 0.6	59.9 ± 0.7
HR (bpm)	672 ± 10	672 ± 10

Echocardiographic Parameters) in 4-5 month old mice.

Data are mean \pm SE. p=NS for all between group comparisons (RGS2^{+/+} vs RGS2^{-/-}). BW – body weight; HW/TL – heart weight normalized to tibia length; LV-Dd - enddiastolic dimension of left ventricle; LV-Ds - end-systolic dimension of left ventricle; WT averaged wall thickness of lateral wall and intraventricular septum; %FS - percent fractional shortening calculated as follows: %FS = (LV-Dd – LV-Ds)/ LV-Dd x 100; HR heart rate.

Genotype	RGS2 ^{+/+} (n = 7)	RGS2 ^{-/-} (n = 7)
LVP sys (mmHg)	104.7 ± 1.7	120.9 ± 11.1 *
LVP dia (mmHg)	5.4 ± 0.8	5.7 ± 0.7
Ea (mmHg. μl ⁻¹)	4.6 ± 0.3	6.3 ± 0.7 *
SVR (mmHg. µl⁻¹)	0.52 ± 0.04	0.75 ± 0.09 *
SV (μl)	22.5 ± 1.8	19.5 ± 1.6
CO (ml/min)	11.9 ± 0.9	10.0 ± 0.9
EF	0.65 ± 0.04	0.64 ± 0.02
dPdtmx (mmHg.s ⁻¹)	11732 ± 769	12187 ± 469
dPdt /IP (s ⁻¹)	187.4 ± 14.7	172.2 ± 6.2
PMXI (mmHg.s ⁻¹)	30.6 ± 2.2	29.1 ± 1.6
PRSW (mmHg)	80.6 ± 5.6	89.2 ± 5.8
Ees (mmHg.µI ⁻¹)	5.71 ± 0.96	5.85 ± 0.82
V ₁₀₀ (µI)	11.5 ± 1.9	7.9 ± 1.3
dPdtmn (mmHg.s ⁻¹)	-10422 ± 441	-11226 ± 566
Tau (ms)	7.7 ± 0.5	8.3 ± 0.4
PFR /EDV (s ⁻¹)	35.7 ± 2.4	32.9 ± 3.5
HR (bpm)	532.3 ± 7.8	513.3 ± 11.1

Supplementary Table 2 Baseline Hemodynamics (age: 4 - 5 month old)

Data are mean ± SE.

LVP sys - LV end-systolic pressure; LVP dia - LV end-diastolic pressure; Ea - effective arterial elastance - an index of total ventricular afterload; SVR - systemic vascular resistance; SV - LV stroke volume; CO - cardiac output; EF - ejection fraction. Contractile systolic indexes are: dP/dt_{max} - maximal rate of pressure rise; dP/dt_{mx}/IP - dP/dt_{max} normalized to instantaneous developed pressure; PMXI - power index: maximal ventricular power divided by end-diastolic volume; PRSW - preload recruitable stroke work; Ees - end-systolic elastance; V₁₀₀ - end-systolic volume at common end-systolic pressure (= 100mmHg) derived from ESPVR. Diastolic indexes are: Tau - time constant of pressure relaxation; dP/dt_{min} - peak rate of LV pressure decline; PFR/EDV - peak ventricular filling rate normalized to end-diastolic volume. The latter reflects early diastolic properties, i.e. relaxation and passive stiffness during early filling. A higher value reflects improved diastolic function. *p < 0.05 vs RGS2^{+/+}. Supplementary Table 3 Baseline Characteristics (Body Weight, Heart Weight and

Age	10 month	
Genotype	RGS2 ^{+/+}	RGS2 ^{-/-}
	(n = 14)	(n = 15)
BW (g)	33.3 ± 0.7	31.5 ± 0.5
HW/TL (g/cm)	83.3 ± 3.2	85.4 ± 4.3
LV-Dd (mm)	3.45 ± 0.07	3.51 ± 0.06
LV-Ds (mm)	1.43 ± 0.08	1.35 ± 0.04
WT (mm)	0.94 ± 0.01	0.94 ± 0.02
%FS	58.5 ± 1.6	61.5 ± 0.7
HR (bpm)	643 ± 9	639 ± 10

Echocardiographic Parameters) in 10 month old mice.

Data are mean \pm SE. p=NS for all between group comparisons (RGS2^{+/+} vs RGS2^{-/-}). BW – body weight; HW/TL – heart weight normalized to tibia length; LV-Dd - enddiastolic dimension of left ventricle; LV-Ds - end-systolic dimension of left ventricle; WT averaged wall thickness of lateral wall and intraventricular septum; %FS - percent fractional shortening calculated as follows: %FS = (LV-Dd – LV-Ds)/ LV-Dd x 100; HR heart rate.