Supporting Information

The Balance of Beneficial and Deleterious Health Effects of Quinones: A Case Study of the Chemical Properties of Genistein and Estrone Quinones

Qiang Zhang, Tingting Tu, D. André d'Avignon and Michael L. Gross*

Department of Chemistry, Washington University in St. Louis, MO 63130

Contents

Fig	ures		
S 1	¹ H NMR spectra of CGenQ and CE ₁ Qs S		
S 2	Plots of 2^{nd} -order kinetics of Gen + IBX and E_1 + IBX	S-3	
S 3	An example of MS/MS product ion spectrum of a CGen-Ade adduct	S-4	
S4	Representative structures of [CGen-Ade + H] ⁺ adducts and proposed	S-5	
	MS/MS fragmentation		
S5	Reconstructed ion chromatogram showing the formation of CGen-Ade and	S-6	
	CE_1Q -Ade adducts in DMF.		
S 6	MS/MS Product ion spectra of the two CE1-Ade adducts from the reaction	S-7	
	of CE1Q and calf thymus DNA		
Tab	oles		
S 1	Accurate mass measurement of MS/MS product ions of Gen and CGen	S-8	
S2	Accurate mass measurement for CGen-Ade adducts	S-9	

Figure S1. ¹H NMR spectra of *a*) Gen + IBX with characteristic ¹H of CGen-3',4'-Q product labeled in green and *b*) E_1 + IBX with characteristic ¹H of CE₁-2,3-Q and CE₁-3,4-Q products labeled in red and blue, respectively. Peaks of the reactants Gen or E1 and the reduced product from IBX (RP) in the reaction mixtures were labeled in black. The y axis is intensity.

Figure S2. 2^{nd} -Order kinetics of Gen + IBX and E_1 + IBX monitored with NMR. A) Plot of the consumption of Gen and E_1 , where $y = \frac{1}{[S]/[S]_0}$ and $[S] \equiv$ concentration of E_1 or Gen at time t and $[S]_0 \equiv$ initial concentration of E_1 or Gen. B) Plot of the formation of CGen-3',4'-Q and CE₁-2,3-Q + CE₁-3,4-Q, where $y = \frac{1}{1-[Q]/[S]_0}$ and $[Q] \equiv$ concentration of the quinone

at time t and $[S]_0 \equiv$ initial concentration of E_1 or Gen. Red squares represent data for E_1 and blue diamond for Gen. For the formation of E_1 , the first six data points were used to calculate rate constant. The formation of CGen-3',4'-Q deviates from 2nd-order kinetics at ~ 30 min and only the first two data points were used to estimate the rate constant.

Figure S3. An example of MS/MS product-ion spectrum (y axis is relative abundance) of the CGen-Ade adducts in Figure 4 ($t_R = 16.82 \text{ min}$).

Figure S4. Representative structures of $[CGen-Ade + H]^+$ adducts. Cleavages shown are in accord with MS/MS observations. One characteristic cleavage of $[CGen-Ade + H]^+$ is C-ring cleavage that produces fragment ions of *m/z* 153 and complementary ion of *m/z* 268.

Figure S5. Reconstructed base-peak ion chromatogram (y axis is ion intensity) shows the formation of CGen-Ade and CE_1Q -Ade adducts in DMF. The CGenQ + Ade and CE_1Q + Ade were mixed at 1:1 ratio.

Figure S6. MS/MS Product-ion spectra of the two major CE1-Ade adducts (4-OH-E1-1-*N*3Ade and unknown) identified in the reaction mixture of CE_1Q + calf thymus DNA at pH 7.4, 37 °C. The y axis is relative abundance.

Parent	Product	Measured	Theoretical	Deviation
Conistain	С И О †	Mass 271 0601	Mass 271 0601	(mau)
Gemstem	$C_{15}\Pi_{11}O_5$	2/1.0001	271.0001	U
	$C_{15}H_9O_4^+$	253.0495	253.0495	0
	$C_{14}H_{11}O_4^+$	243.0652	243.0652	0
	$C_{14}H_{11}O_3^+$	227.0703	227.0703	0
	$C_{14}H_9O_3^{+}$	225.0546	225.0546	0
	$C_{13}H_{11}O_3^+$	215.0703	215.0703	0
	$C_{13}H_9O_2^+$	197.0597	197.0597	0
	$C_{11}H_7O_3^+$	187.0390	187.0390	0
	$C_{10}H_7O_2^+$	159.0441	159.0441	0
	$C_{7}H_{5}O_{4}^{+}$	153.0183	153.0183	0
	$C_8H_5O_3^+$	149.0233	149.0233	0
Catechol Genistein	C ₁₅ H ₁₁ O ₆ ⁺	287.0551	287.0550	+0.1
	$C_{15}H_9O_5^+$	269.0445	269.0444	+0.1
	$C_{14}H_{11}O_5^+$	259.0602	259.0601	+0.1
	$C_{13}H_7O_6^+$	259.0238	259.0237	+0.1
	$C_{14}H_9O_4^{+}$	241.0496	241.0495	+0.1
	$C_{13}H_5O_5^+$	241.0137	241.0131	+0.6
	$C_{13}H_{11}O_4^+$	231.0653	231.0652	+0.1
	$C_{12}H_7O_5^+$	231.0289	231.0288	+0.1
	$C_{13}H_9O_3^+$	213.0546	213.0546	0
	$C_{11}H_7O_4^+$	203.0339	203.0339	0
	$C_{7}H_{5}O_{4}^{+}$	153.0183	153.0183	0

Table S1. Accurate mass measurement of MS/MS product ions of genistein $[C_{15}H_{10}O_5 + H]^+$ and catechol genistein $[C_{15}H_{10}O_6 + H]^+$

Retention	Measured	Deviation	
time (min)	Mass	(mau)	
17.45	420.0939	0.0	
17.95	420.0938	-0.1	
18.38	420.0941	+0.2	
18.80	420.0937	-0.2	
19.38	420.0938	-0.1	

Table S2. Accurate mass measurement for the five catechol genistein adenine $[C_{20}H_{13}N_5O_6 + H]^+$ adducts shown in Figure S5.