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Biological function of the PID candidate genes

When grouped to general categories, among the candidate genes, there are 8 receptors, 8
protein kinases and 7 regulators. Only two of the candidate proteins are involved in the central
processing of invaders. Granzyme B is an endopeptidase in cytolytic T cells and natural killer
(NK) cells. The other proteolytic enzyme is cathepsin G, which is expressed in neutrophilic
polymorphonuclear leukocytes. Both of these enzymes are essential for killing and digesting
pathogens and are thus suspected PID candidates. The reason why they have not yet been
identified from patients could be that there are also other proteases and, as very promiscuous
enzymes, can therefore easily be replaced. Further, these proteins might be disease related

only for certain rare pathogens.

CD4, CD9, ITGB1 (CD29), THY1 (CD29), KIT (CD117) and IL2RB (CD122) are cell
surface receptors. CD4 appears on the surface of helper and regulatory T-cells, macrophages
and dendritic cells. It is part of the T-cell receptor (TCR) and important for signaling in T-

cells. CD9 interacts with several proteins including integrins and others involved in cell
adhesion, motility and platelet activation. Interleukin 2 receptor 3 (IL2RB) forms a central T-
cell signaling receptor with the o and y chains. Mutations in the a—(IL2RA) and so-called
common Y-chain (IL2RG) lead to SCID (1), thus it is likely that B—chain mutations would
also be PID-related. Integrin 31 subunit (ITGB1) appears in several alternatively spliced

forms and has numerous interacting partners when bound to different a subunits to constitute
the functional dimer. THY'1 (CD90) is a heavily glycosylated GPI-anchored protein that has a
wide expression pattern. Its detailed function is not yet known but there is data implying that

it is important for cell-cell and cell-ligand interactions in inflammation, apoptosis, and T-cell
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activation. KIT is a cytokine receptor protein tyrosine kinase (PTK) that is essential for
proliferation, differentiation and survival of several cell types. It is a proto-oncogene and

related to several forms of cancers, as listed in KinMutBase (2).

Nuclear factor KB (NF-kB) is known to regulate the expression of hundreds of genes active in
immunity, inflammation, cell death and other processes. The specificity of the responses
relates to numerous processes and features. There are at least four distinct pathways related to
it (for a review see 3). The stimulation of classical and alternative pathway cell surface
receptors leads to activation of IKK kinase complex. Once activated, the complex
phosphorylates inhibitory I-kB, which releases from the NF-kKB dimer, and becomes activated
and transported to the nucleus where it recognizes 9-10 bp long binding sites on the genomic

DNA and acts as a transcription factor.

Several proteins are involved in these pathways depending on the receptors and constitution of

the IKK and NF-KB complexes. Many of these proteins have several family members, and

thus the number of different combinations is high when complexes are formed. RELA, one of

the candidate genes, belongs to the central Rel/NF-kB gene family. Other PID candidates in
this pathway are IRAKI1, RIPK1, TRAFI and TRAF2. Signals from the receptors are

transmitted further by interactions with adapter proteins and kinases. Interleukin-1 receptor-
associated kinase 1 (IRAK1) is a serine/treonine kinase that regulates NF-KB. Several other

PID candidate genes also regulate NF-kB, including the receptor (TNFRSF)-interacting
serine-threonine kinase 1 (RIPK1), and TNF receptor-associated factors 1 and 2 (TRAFI,

TRAF2). TRAFs mediate the connection of tumor necrosis factor receptor family members

and several downstream partners in addition to NF-KB along the MAPKS8/JNK pathway.
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TRAF1 and TRAF?2 form a heterodimer.

Since the NF-KB pathway is so essential and there are many proteins involved in these
cascades, several diseases have been found in patients related to it (for a review see 4). There
are PIDs among these diseases, namely X-linked hyper IgM syndrome and hypohydrotic

ectodermal dysplasia due to mutations in NEMO (IKBKG) (5), and autosomal dominant

anhidrotic ectodermal dysplasia and T-cell immunodeficiency because of IKKa (NFKBIA)
(6) mutations. Both these proteins are subunits of the IKK complex. IRAK4 deficiency arises
from impaired IRAK4 function (7). Along with IRAKI, one of our PID candidates, it
participates in IL-1 receptor and Toll-like receptor (TLR) pathways. Information for disease

causing mutations in these genes and other PID genes is available from IDbases (8).

Other PID candidates with signaling functions include Fyn, a Src family PTK, and MAPK 14,
a MAP family serine/threonine kinase. The Src and MAP kinase families are both very
essential signaling routes that regulate various activities within cells. Knock-out mouse model
for Fyn shows several defects in T-cell development and function (9,10). Soluble and receptor
kinases are often cancer-causing when mutated. Both inactivating and constitutively

activating gain-of-function mutations can be deleterious.

Insulin-like growth factor 1 receptor (IGF1R) is another PTK. It recognizes IGF-1, which is a
polypeptide hormone and similar to insulin, which binds to another PID candidate, insulin
receptor (INSR), another receptor PTK. INSR is the causative gene for diabetes mellitus, an
autoimmune disease. Our method selects it because the patients could also have PID
symptoms which, however, are usually hidden because of diabetes. Again, there is a

possibility that some patients might also have PID symptoms.
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Tyrosine kinase 2 (TYK?2) belongs to the same family as Janus kinase 3 (JAK3), which leads
to SCID when mutated (11,12), and JAK1 and JAK?2, which are also PID candidates. The
family members are involved in cytokine receptor signaling pathways. They exert their
function by phosphorylating STAT family member proteins, which form homo- and
heterodimers. The dimers are then translocated to the nucleus to act as transcription
activators. STAT1 and -2 cause PID when mutated (13) and STAT3 is a PID candidate (14).
The importance of these pathways is further indicated by suppressor of cytokine signaling 1
(SOCS1), another PID candidate gene. SOCSI is a negative regulator of the JAK/STAT

pathways.

Low density lipoprotein-related protein 1 (LRP1) is a low density lipoprotein (LDL) family
member and plays a role in receptor-mediated endocytosis and phagocytosis. LRP1 binds to

apoE-containing lipoproteins in a C1g-mediated apoptotic cascade.

X-ray repair complementing defective repair in Chinese hamster cells 5 (XRCC5) is a subunit
of ATP-dependent DNA helicase II or Ku heterodimer that works in the repair of DNA
double strand breaks by non-homologous end joining in the generation of immunological
receptor and antibody genes. This is a highly likely PID gene as the knock-out in mice has a
lethal effect (15,16). The effect may also be lethal in humans and therefore patients have not
been identified with mutations in this gene. Defective V(D)J recombination of immunological

receptors and antibodies severely affects adaptive immunity.

Some of the candidate genes are so essential that it is likely that mutations in them have lethal
effects and therefore may not appear in PID patients. For example, deletion of the Fas-
associated death domain (FADD) gene causes embryonic lethality in mice (17,18). In platelet-
derived growth factor receptor, beta polypeptide (PDGFRB) mutations cause perinatal
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lethality (19).

Estimation of the performance of the method

Our bioinformatics method can prioritize possible candidate genes. Accurate estimation of
selectivity and specificity of the method cannot be done because of lack of a test set. We can
roughly estimate the performance as follows: The high network scores together with the
significant gene ontology terms resulted in 39 genes (Fig. 2). 13 of them were known PID
genes. When extrapolating based on this ratio we expect at least 8 to 9 genes of the predicted
26 to have a connection to PIDs. This ratio is somewhat higher than the 10% estimated for
some earlier methods (20). Recently some methods have been reported to have higher
selectivity, around 20-40% (21,22). These methods restrict the search space and require the
chromosomal location of the disease gene to be known. Our approach does not need or use

this kind of information and is thus a true de novo candidate prediction method.
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