Supplementary methods

Center of rotation

It might seem intuitive to calculate the translation from $|\mathbf{t}|$, the displacement of c_S , the center of mass of S. However, except for translation parallel to \mathbf{u} , \mathbf{t} may arise from rotation about a physically meaningful axis that does not pass through c_S . We define an axis as physically meaningful if this axis passes near the interface between L and S, that is, the residues that define the 6 Å contacts between L and S. We define an axis as passing near a set of residues if the C_α atom of any residue in the set is no more than 5.0 Å from the axis. To assess this, we first find a center of rotation c_R , such that the motion can be described as a rotation by θ about \mathbf{u} , centered at c_R , and a translation T_u parallel to \mathbf{u} .

To do this, we first find the basis vectors $\mathbf{e_x}$, $\mathbf{e_y}$, and $\mathbf{e_z}$ of a right-handed orthogonal coordinate system centered at c_R describing the counterclockwise motion from state A to state B. Let s_1 and s_2 be the centers of S_A and S_B' , and let \mathbf{s} be the vector between the two centers. Let $\mathbf{e_z} = \mathbf{u}$, and let $\mathbf{e_x}$ lie in a plane defined by $\mathbf{e_z}$ and the midpoint of \mathbf{s} such that s_1 and s_2 are in the $(\mathbf{e_x}, -\mathbf{e_y})$ and $(\mathbf{e_x}, -\mathbf{e_y})$ quadrants, respectively. Then, $\mathbf{e_x} = \text{unit}(\mathbf{s} \times \mathbf{e_z})$, where $\text{unit}(\mathbf{v}) = \mathbf{v_y}$, and $\mathbf{e_y} = \mathbf{e_z} \times \mathbf{x}$.

Then, we find the distance of s_1 from the origin in the $\mathbf{e_y}$ and $\mathbf{e_x}$ directions. Since $\mathbf{e_x}$ lies in a plane bisecting \mathbf{s} , s_1 is $y = \frac{1}{2}(\mathbf{s} \cdot \mathbf{e_y})$ from the origin in the $-\mathbf{e_y}$ direction. Next, we triangulate to find x, the distance of s_1 from the origin in the $\mathbf{e_x}$ direction:

$$x = \frac{y}{\tan(\frac{1}{2}\theta)}.$$

To find c_R , we simply extrapolate back:

$$c_{\rm R} = s_1 - x \mathbf{e}_{\rm x} + y \mathbf{e}_{\rm v}$$
.