SUPPLEMENTAL FIGURE LEGENDS - Supp. Fig. 1. Concentration controls for CD. A. 1° WT and MUT seeds were used in three serial seeding reactions of buffer. 4° reactions were ultracentrifuged at 100,000 X g for 1 h, and pellets were resuspended in PBS. CD spectra are non-existent. B. CD spectra of 4 μ M, 3 μ M, and 2 μ M 1° MUT fibrils. A 2 μ M decrease in concentration generates a 1 mdeg loss in CD spectrum intensity. - Supp. Fig. 2. Full CD spectra for fragility assays. A. 1° WT fibrillization reactions before (WTpre) and after (WTpost) sonication. B. 1° MUT fibrillization reactions before (MUTpre) and after (MUTpost) sonication. C. 4° WT fibrillization reactions before (WTpre) and after (WTpost) sonication. D. 4° WT* fibrillization reactions before (WT*pre) and after (WT*post) sonication. - Supp. Fig. 3. Δ K280 seeds a novel conformation of WT fibril, WT^K. A. The insoluble fraction of 1° WT and Δ K280 reactions have distinct CD spectra. B. After 15 h of fibrillization, most of the soluble tau monomer appears in the insoluble fraction after a 100,000 X g ultracentrifugation and visualization via coomassie stain. C. Quantification of three separate experiments: after 15 h, 88% of WT tau monomer is insoluble, versus 94% of Δ K280 tau. D. The insoluble fraction of 4° WT and WT^K reactions have distinct CD spectra. E. After three serial seeding reactions and 96 h final growth, 22% of WT and WT^K tau are insoluble, indicating comparable degrees of fibrillization. Supp. Figure 1 Supp. Figure 2 Supp. Figure 3