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SI Appendix: Full Description of Data Analysis Methods

Behavioral Data Analysis

Results from data analyses were expressed as mean ± standard error of the mean.

Analyses of behavioral data were performed with GraphPad Prism (GraphPad Software,

Inc., San Diego, California), and made use of two-way or one-way ANOVAs (with

Bonferroni or Newman-Keuls post-hoc tests) and two-sample or one-sample t-tests.

Sequential Bonferroni correction for multiple comparisons was performed with the

Holm’s method (1) whenever multiple independent t-tests were used in the same data

set.

Two-Bottle Preference: All two-bottle preference tests were analyzed by calculating the

preference ratios (P) for any particular stimulus as
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= , where n(stimulusX) denotes the total volume

(rats) or the total number of licks (mice) for a particular stimulus X during a session.

Average preference ratio across testing days was calculated for each animal (to account

for side-bias). Note that in most cases, preference ratio was determined vs. water (i.e.,

stimulus 2 is water in most cases). Preference for each tastant was averaged across

animals and expressed as mean ± SEM (standard error of the mean). Significance tests

were based on one-sample t-tests against 0.5, which is the reference value meaning

indifference with respect to stimulus 2. The concentration-preference functions for the

ascending concentration series for nicotine and quinine in the rat were determined by

fitting the means of each series to a sigmoidal dose-response function with
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= , where P is preference at a log[tastant]=x, b is the value of log[tastant] at

half-maximal preference (i.e., logEC50) and n is the slope factor. Given that the model

was constructed with two-bottle preference values measured for two aversive tastants, it

was constrained to a maximum value of 0.5 (maximal preference at concentrations

below detection thresholds) and a minimum value of 0 (minimal preference at higher

concentrations eliciting total rejection).

Rat Two-Alternative Choice Tests: Correct performance (i.e., proportion of correct

responses) on all trials with a lever press was calculated across all tastants in a session

and for each tastant across all concentrations.

Behavioral Analysis for the FR5 Schedule: For each stimulus in each test session, the

amount of time elapsed between consecutive stimulus deliveries was measured. This

span of time is referred to as the inter-tastant interval, or ITI. Average ITI’s for each

tastant in each animal (across all concentrations and testing days) were used to

calculate the mean ± SEM tastant ITI across all animals. These were compared to

establish relative preferences (more preferred tastants will elicit higher licking rates and

thus shorter ITI’s than less preferred ones with lower licking rates and long ITI’s). Since

this is an absolute measure averaged across a variable number of exposures to multiple

concentrations of each tastant, the weighted average exposure concentration for each

tastant ( [ ]T ) was calculated such that [ ] [ ]
∑
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T , where [ ]C  is each concentration

that was used and Cn  is the number of exposures at each particular concentration.
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Brief access tests: Lick ratios (LR) were defined as the amount of a particular stimulus

consumed with respect to water, i.e., 
)water(
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nLR = , where n(X) denotes the

total number of licks for a given stimulus X during a session. In animals tested with

nicotine in the presence or absence of mecamylamine, lick ratios from single behavioral

sessions were compared (mecamylamine session either the previous or the subsequent

day to the nicotine only session – order counterbalanced across animals). In all other

cases, lick ratios for each stimulus were averaged across days in each animal. Only data

from sessions where animals gave 20 or more licks for water were analyzed. Thus, 3 WT

mice (2 from the nicotine/quinine test; 1 from the nicotine/mecamylamine test) were

excluded from analysis. Lick ratios for each tastant were averaged across animals and

expressed as mean ± SEM. Average lick ratios for each experimental group were tested

against 1.0, which is the reference value meaning indifference with respect to water.

Chorda Tympani Taste Nerve Recording Analysis

Data analysis pertaining to CT recordings was performed as described previously (2, 3).

Phasic responses were obtained from the peak CT response while tonic responses were

derived from the area under the curve for the last 30 seconds of the quasi-steady-state

part of the response. In both cases responses were normalized to the tonic response to

300mM NH4Cl. The responses thus quantified for each test stimulus in each animal were

then averaged across 3 animals and expressed as mean ± SD (standard deviation).

Analyses were performed using Sigmaplot (Systat Software Inc., San Jose, California)

and with GraphPad Prism (GraphPad Software, Inc., San Diego, California), and made
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use of two-way or one-way ANOVAs (with Bonferroni post-hoc tests) and two-sample t-

tests.

Nicotine Dose-Response Curves and Effect of 0.3mm Mecamylamine: The data points

for each nicotine-concentration series curve (with or without mecamylamine) and each

animal group (rats, WT mice or KO mice) were fit to the Hill equation, i.e. nn
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where R is the CT response at nicotine concentration c, Rm is the maximum response, K

is the nicotine concentration that gives half-maximal response, and n is a number greater

or equal to one. In each group, the asymptotic percent inhibition due to 0.3mM

mecamylamine was calculated as: 
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percent inhibition in KO compared to WT was calculated as: 
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Mecamylamine Dose-Inhibition Curves: The effects of mecamylamine on the responses

to 10mM nicotine were plotted on a log scale of the molar concentration of

mecamylamine. To avoid the minus infinity problem with the log of 0, the point

corresponding to log[mecamylamine]=-5 is actually the response to 10mM nicotine alone

(i.e, 0mM mecamylamine). A mecamylamine dose-inhibition curve was plotted according

to abxn
m RRR +

+
= − )(101

, with Rm, b, Ra and n as the parameters to be fitted. R is the CT

response at a log[mecamylamine]=x, Rm is the maximum response above the

asymptotic response value (Ra) and b is the value of log[mecamylamine] for which
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ma RRR 5.0=−  (i.e., logEC50). n is a fitted parameter associated to the interaction

between mecamylamine and the nicotinic receptor.

Gustatory Cortex Neuronal Data Analysis

GC neuronal data analysis was conducted according to previously described

methodology and will be described only briefly (4, 5). A total of 12 ensembles, each with

3 to 16 neurons, were analyzed separately. Given our previous findings (5), a 150ms

window was taken from the fifth, reinforced lick and, for each neuron, spikes that fell

within this window were binned in 15 ms increments. The spike counts corresponding to

the third and seventh trials for each block of eight were dropped from the data set and

the remaining data for each ensemble was analyzed with a Bayesian generalized linear

model (GLM) (6). The reserved data was used to conduct the single trial predictions. In

sessions where mecamylamine was added to stimuli, all trials with stimulus +

mecamylamine were additionally dropped and used for predictions (see below).

Ensemble Modeling: Yijkl was defined as the number of spikes for neuron i, stimulus j,

trial k, and time bin l while Wijk is the number of spikes for neuron i, stimulus j, and trial k

across the 150 ms window. Spikes were modeled as a Poisson distribution such that Yijkl

~ Poi(λijkl) and Wijk ~ Poi(λijk) where λijkl represents the Poisson distribution of the number

of spikes in a 15 ms bin and λijk = ∑l λijkl. Yijkl’s and Wijk’s were assumed to be mutually

independent. In this model ln(λijk) = cij + dijk, where exp(cij) represents the mean firing

rate of neuron i to stimulus j and dijk is an adjustment parameter across trials. For each

neuron, the variability of the cij’s as j ranges over all stimuli captures how that neuron
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changes its firing rate in response to different stimuli. Thus, λijk represents the rate

parameter of the model. Additionally, each spike in a 150ms window must fall into one of

ten 15ms bins. The probability of falling in bin “l” is aijkl = λijkl /λijk. Thus, aijkl represents the

temporal parameter of the model. Priors for cij, dijk and aijkl were set according to previous

specifications (4). The terms cij and dijk were both censored for values below -5. A total of

40,000 iterations were conducted, and the first 1,000 samples were discarded, although

the model always converged well before the first 1,000 iterations. Thirty-nine thousand

iterations remained, and the data was then thinned in increments of 100 to make the

analysis more computationally tractable. This resulted in a final set of 390 iterations from

which to construct the posterior distributions for these terms.

Ensemble Data Prediction: When the model had run to completion, the distributions of

the spike sums, hijŴ , was given by ( )hhijhij dcExpW ˆˆˆ += , with h as the iteration number.

The distributions of the ensemble firing patterns for the different stimuli, ˆ Y , across all

trials is then ˆ Y hij1,..., ˆ Y hij10( )= ˆ W hij * ˆ a hij1,..., ˆ a hij10( ). ˆ a  reflects how the spikes are distributed in

the bins and not the actual spike counts in each bin per se (the values of ˆ a  sum to one

across the time bins). The withheld data for a given ensemble and for a given stimulus in

each bin was denoted as Xijkl. A combined model, where ˆ Y  is a function of both ˆ W , the

rate parameter, and ˆ a , the temporal parameter, was used to calculate the probability of

observing X given that a single delivery of a particular stimulus Sj had occurred

(P(Xijkl|Sj)). The stimulus that is predicted to have occurred given the ensemble firing

pattern on the particular trial is the one for which P(Xijkl|Sj) is the greatest. These

calculations are then repeated for each delivery of X.
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Stimulus Predictions Across all Ensembles: To quantify prediction accuracy for each

stimulus across all ensembles, the total number of correct predictions was divided by the

total number of observations for the reserved data for that particular stimulus across all

12 ensembles. In sessions where mecamylamine was added to stimuli, trials with

stimulus + mecamylamine were not included for this general assessment of GC

ensemble stimulus/tastant predictions. Except where noted, we restricted our analyses

to nicotine and quinine. For ensembles in which only one concentration of nicotine and

quinine were tested (n = 3), the odds of correctly identifying stimulus identity by chance

were one in two, or 50%. For ensembles tested with two concentrations of each tastant

(n = 9), the odds of correctly identifying stimuli by chance were one in four, or 25%. Thus

a weighted average of the chance level for each stimulus, given the number of stimuli

tested and respective number of observations in each ensemble, was calculated such

that 
∑

∑ ∗
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)( , with Ch  representing the weighted chance level, S being

the stimulus, Ch the chance level in ensemble N and t(S) the number of observed trials

for the stimulus in ensemble N. The chance cutoff level is analogous to an α=0.05 (6, 7).

Hence, if the ensemble prediction level is greater than the weighted chance level, then

the ensembles collectively can discriminate that particular stimulus. Because these

models are Bayesian, and each possesses a large number of parameters, it is standard

practice to compare such models simply in terms of the percentage of data that each can

predict (6, 7).
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Tastant Predictions Across all Ensembles: The percentage of times that a particular

tastant type (i.e. nicotine or quinine) was correctly identified was also determined. In this

case, regardless of concentration, the total number of correct tastant classifications was

divided by the total number of observations of that tastant across all concentrations.

Since there were only two categories, the chance level was 50%. The tastant prediction

rates were compared to the chance levels to determine whether tastant type could

correctly classified by each model.

Predictions by Individual GC Ensembles: For each stimulus in each ensemble, the

number of correct predictions was divided by the total number of observations for that

particular stimulus to obtain the percent correct predictions. An ensemble was

considered to correctly predict a particular stimulus whenever the percent correct

predictions were above chance level for that ensemble (25 or 50%, see above). The

proportion of correctly predicted stimuli was used as a measure of ensemble efficacy. To

verify the importance of ensemble size in stimulus discrimination, the existence of a

linear correlation between ensemble efficacy and ensemble size (number of neurons)

was calculated. Since, under these conditions, the proportion of accurately predicted

stimuli is on a discrete numerical scale (i.e, can only assume five values - 0, 0.25, 0.5,

0.75 or 1) the non-parametric Spearman’s rho correlation coefficient was calculated.

Effects of mecamylamine on GC ensemble tastant prediction: In mecamylamine

experiments, all trials for each stimulus to which mecamylamine had been added were

dropped from the data set and used for additional analyses described here. Single trial
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tastant identity predictions (nicotine vs. quinine – chance level of 50%) were conducted

separately for the reserved data collected prior to and after mecamylamine addition. A

comparison between the two allowed for the verification of the effects of peripheral

nAChR blockade on ensemble prediction of tastants. To control for any unspecific effects

of time or repeated exposure to nicotine, sessions with a similar number of total tastant

blocks were chosen (n=4) and  reanalyzed analogously to the mecamylamine sessions.

Thus, GLMs were constructed excluding nicotine and water trials from the second half of

the sessions and tastant identity predictions (nicotine vs. quinine) for nicotine trials were

performed separately for the first half and second half of each session. Finally, tastant

identity predictions for nicotine were repeated for the second half of both the

mecamylamine and control sessions but a third classification possibility (water) was

included. This last step was used to ascertain if the addition of mecamylamine

introduced a bias in the classification of incorrectly predicted nicotine trials, different from

that existing in control sessions. To that effect, the percentage of all incorrectly predicted

nicotine trials classified as quinine was calculated. This number was compared with the

chance level for a quinine error. Since some sessions were conducted with only one

concentration of quinine (chance of quinine error of 50%) and others with two

concentrations of quinine (chance of quinine error of 66.6%), the weighted chance level

for quinine error was calculated for both the mecamylamine and control sessions, as

described for the calculation of weighted chance levels for stimulus predictions.
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