Supporting Information

Galarza et al. 10.1073/pnas.0806804106

SI Text

Microsatellite Data Analysis. DNA extractions were performed from pectoral fin tissue following either HotSHOT protocol (1), or the Chelex 10% protocol (2). A total of 63 microsatellite loci (mean 9 loci per species) were successfully amplified by PCR (3–8). Amplified products were resolved on an ABI3100 or an ABI 3700 Genetic Analyser (Applied Biosystems). Allele scoring was carried out by using GeneMapper v 3.5 software (Applied Biosystems). The total number of alleles per locus and sample was obtained by using GENETIX v.4.02 (9). Observed and expected heterozygosities were determined by using the software package Arlequin v. 2.0 (10). Deviations from Hardy– Weinberg expectations were estimated according to the level of significance determined by a Markov chain method by using GENEPOP v. 3.4 (11). Bonferroni corrections were made for multiple tests.

- 1. Truett GE, et al. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). BioTechniques 29:52–54.
- Estoup A, Largiadèr CR, Perrot E, Chourrout D (1996) Rapid one tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. *Mol Mar Biol Biotech* 5:295–298.
- Carreras-Carbonell J, Macpherson E, Pascual M (2004) Isolation and characterization of microsatellite loci in *Tripterygion delaisi*. Mol Ecol Notes 4:438–439.
- Carreras-Carbonell J, Macpherson E, Pascual M (2006) Characterization of 12 microsatellite markers in Serranus cabrilla (Pisces: Serranidae). Mol Ecol Notes 6:204–206.
- Galarza JA, Carreras-Carbonell J, Macpherson E, Turner GF, Rico C (2006) Isolation and characterization of polymorphic microsatellite markers for peacock wrasse (Symphodus tinca). Mol Ecol Notes 6:747–749.
- Galarza JA, et al. (2007) Polymorphic microsatellite loci for the cardinal fish (Apogon imberbis). Conserv Genet 8:1251–1253.
- 7. Roques S, et al. (2007) Isolation of eight microsatellites loci from the saddled bream, Oblada melanura and cross-species amplification in two sea bream species of the genus Diplodus. Conserv Genet 8:1255–1257.

The number of analyzed individuals and mean number of alleles for each species in each locality is given in Table S1. The majority of the assayed microsatellite loci showed high levels of polymorphism. The total number of alleles per locus, observed and expected heterozygosity as well as Hardy-Weinberg expectations, are listed in Table S2. No evidence of linkage disequilibrium was found between locus pairs. Significant deviations from Hardy-Weinberg expectations within sampling locations were observed for most species. Out of 252 tests across species, 30 remained significant after Bonferroni correction. One or two loci accounted for >90% of the deviations from Hardy-Weinberg expectations for a particular species (Table S2). These loci, Dvul2, Dvul63, Msur14, Sc05, Td09, St138, Aimb17, and Aimb22, were removed from further analysis. Exclusion of these loci made little difference to the overall estimates of population structure; although the magnitude of the F_{ST} values changed slightly, the statistical significance remained unaltered.

- Roques S, Galarza JA, Macpherson E, Turner GF, Rico C (2007) Isolation and characterization of nine polymorphic microsatellite markers in the two-banded sea bream (*Diplodus vulgaris*) and cross-species amplification in the white sea bream (*Diplodus sargus*) and the saddled bream (*Oblada melanura*). Mol Ecol Notes 7:661–663.
- Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1997) Genetix v. 4.01 Software under Windows for Population Genetics (Translated from French). Laboratoire Génome, Populations, Interactions (Centre National de la Recherche Scientifique Unité Propre de Recherche 9060, Montpellier, France).
- Schneider S, Roessli D, Excoffier L (2000) Arlequin Ver. 2.0: A software for population genetics data analysis, Genetics and Biometry Laboratory (University of Geneva, Switzerland).
- 11. Raymond M, Rousset F (1995) GENEPOP (Version 3.4) population genetics software for exact tests and ecumenicism. J Hered 86:248–249.

Table S1. Number of analyzed individuals (N) and mean number of alleles (Na) for each species in each locality

Species	Herradura		Cabo de Gata		Ma	llorca	Blanes	
	N	Na	N	Na	N	Na	N	Na
Diplodus vulgaris	48	13.8	47	14	47	15.6	48	15.5
Mullus surmuletus	48	9.3	48	11.4	48	11.9	48	11.2
Serranus cabrilla	32	9	30	10.4	30	10.4	30	8.6
Oblada melanura	43	11.2	43	11.6	47	12.2	34	12
Tripterygion delaisi	35	18.4	33	16.6	42	16	47	18.7
Apogon imberbis	32	11.2	48	11.5	48	10.6	47	12.5
Symphodus tinca	40	12	57	13.6	47	12.3	51	14.1

Table S2. Summary	statistics fo	r microsatellite lo	ci among	sampling	collections	of D.	vulgaris	species
-------------------	---------------	---------------------	----------	----------	-------------	-------	----------	---------

					Locus				
Species	Dvul1	Dvul2	Dvul33	Dvul4	Dvul61	Dvul63	Dvul84	Dvul38	Overall
D. vulgaris, HE									
Ν	48	48	47	48	43	44	46	47	
A	5	11	17	16	8	16	17	21	13.875
Rs	4.998	10.884	16.639	15.667	8	15.886	16.591	20.808	13.684
Ho	0.597	0.542	0.872	0.749	0.86	0.591	0.894	0.915	
H _E	0.635	0.824	0.9	0.824	0.796	0.827	0.918	0.932	
F _{IS}	0.092	0.341*	0.032	0.123*	0.139	0.285*	0.024	0.016	0.131
D. vulgaris, CG									
n	47	46	48	47	46	44	44	44	
a	2	10	15	16	26	15	15	13	14
Rs	2	9.927	14.769	15.731	25.652	15	14.909	12.789	13.847
Ho	0.298	0.5	0.875	0.875	0.913	0.758	0.752	0.897	
H _E	0.303	0.803	0.892	0.898	0.952	0.933	0.824	0.923	
Fis	-0.044	0.372*	0.015	0.027	0.042	0.193*	0.113*	0.013	0.091
D. vulgaris, MA									
Ν	47	46	47	45	46	47	47	45	
А	4	12	16	14	26	17	19	17	15.625
Rs	3.993	11.92	15.488	13.908	25.576	16.81	18.299	18.197	15.523
Ho	0.277	0.435	0.861	0.911	0.896	0.809	0.809	0.927	
HE	0.269	0.805	0.913	0.906	0.947	0.927	0.815	0.935	
F _{IS}	-0.101	0.462*	0.101	-0.009	0.086	0.128*	0.008	0.034	0.088
D. vulgaris, BL									
N	48	43	47	48	48	44	48	48	
А	4	10	13	15	28	14	22	18	15.5
Rs	3.895	10	12.889	14.674	27.105	13.932	20.814	17.734	15.13
Ho	0.229	0.488	0.957	0.917	0.913	0.591	0.771	0.871	
H _E	0.246	0.841	0.875	0.882	0.957	0.919	0.756	0.917	
F _{IS}	0.066	0.413*	-0.095	-0.041	0.081	0.355*	-0.019	0.121	0.110

Table S3. Summar	y statistics for mic	osatellite loci amon	g sampling coll	lections of M.	surmuletus species

	Locus										
Species	Mb3	Mb11	Mb14	Mb28	Mb46	Mb55	Mb63	Mb130	Mb132	Mb133	Overall
M. surmuletus, HE											
n	48	45	47	48	48	48	46	48	45	48	47.1
a	6	11	16	2	6	7	14	10	10	11	9.7
Rs	5.677	4.862	5.729	2	3.284	6.323	13.381	4.707	9.745	10.416	4.230
Ho	0.444	0.868	0.743	0.182	0.765	0.653	0.815	0.760	0.846	0.793	
H _E	0.419	0.880	0.877	0.189	0.873	0.704	0.893	0.785	0.833	0.848	
F _{IS}	-0.060	0.178	0.243*	0.113	0.033	0.121	0.088	0.043	-0.015	0.122*	0.086
M. surmuletus, CG											
n	46	45	48	48	44	48	48	48	48	48	
a	7	18	17	2	5	7	16	15	10	17	11.4
Rs	2.963	6.029	5.923	1.251	2.424	3.434	5.481	5.219	4.712	5.749	4.318
Ho	0.520	0.862	0.651	0.068	0.528	0.658	0.850	0.814	0.790	0.829	
H _E	0.560	0.901	0.892	0.065	0.524	0.703	0.868	0.834	0.816	0.881	
Fis	0.082	0.106	0.246*	-0.024	0.097	0.119*	0.047	0.095	0.066	0.103	0.093
M. surmuletus, MA											
n	48	48	48	48	42	48	48	48	48	41	
а	8	11	17	3	5	10	18	14	12	21	11.9
Rs	2.733	4.517	6.114	1.756	2.373	3.731	6.423	4.727	5.416	6.502	4.429
Ho	0.326	0.720	0.722	0.178	0.492	0.660	0.930	0.768	0.857	0.896	
HE	0.458	0.744	0.908	0.259	0.501	0.706	0.924	0.783	0.868	0.925	
F _{IS}	0.199*	0.097	0.495*	0.119*	0.058	0.103	0.005	0.097	0.014	0.063	0.125
<i>M. surmuletus</i> , BL											
n	48	48	48	48	44	48	48	48	47	48	
а	8	21	17	3	4	9	17	13	9	11	11.2
Rs	2.711	6.371	6.087	1.57	2.611	3.903	5.583	4.928	4.179	5.338	4.328
Ho	0.467	0.863	0.891	0.174	0.565	0.761	0.851	0.778	0.826	0.849	
H _E	0.493	0.919	0.905	0.160	0.579	0.748	0.868	0.799	0.740	0.861	
F _{IS}	0.065	0.086	0.226*	-0.073	0.091	-0.006	0.092	0.048	-0.105	0.071	0.049

Table S4. Summ	nary statistics f	for microsatellite	loci among	sampling	collections of S	5. cabrilla species

						Locus						
Species	Sc03	Sc04	Sc05	Sc06	Sc07	Sc08	Sc11	Sc12	Sc13	Sc14	Sc15	Overall
S. cabrilla, HE												
n	32	32	32	31	32	32	32	30	30	28	31	
а	8	7	17	10	6	7	4	4	12	16	8	9
Rs	7.5	6.861	16.579	9.613	5.986	6.875	3.986	4	11.73	16	7.797	8.811
Ho	0.688	0.750	0.656	0.871	0.779	0.688	0.719	0.6	0.9	0.821	0.613	
H _E	0.662	0.804	0.939	0.818	0.801	0.741	0.671	0.591	0.868	0.916	0.641	
F _{IS}	-0.039	0.068	0.274*	-0.07	0.096	0.070	-0.086	-0.049	-0.037	0.1	0.045	0.033
S. cabrilla, CG												
n	30	30	30	29	30	30	30	29	29	29	29	
а	8	11	20	12	9	11	6	4	12	16	6	10.454
Rs	7.733	10.6	19.46	11.929	8.733	10.663	5.927	3.965	11.929	15.826	5.931	10.245
Ho	0.767	0.867	0.733	0.864	0.8	0.767	0.694	0.345	0.897	0.893	0.652	
H _E	0.7	0.832	0.946	0.883	0.814	0.797	0.728	0.559	0.872	0.908	0.691	
Fis	-0.124	-0.041	0.253*	0.069	0.018	0.062	0.063	0.163*	-0.03	0.029	0.09	0.050
S. cabrilla, MA												
n	30	30	30	30	30	30	30	30	30	30	30	
а	7	9	21	14	9	9	5	6	11	19	5	10.454
Rs	6.86	8.863	20.526	13.796	8.8	8.796	4.867	5.863	10.733	18.196	4.93	10.202
Ho	0.7	0.833	0.767	0.933	0.8	0.7	0.333	0.6	0.867	0.867	0.433	
HE	0.688	0.846	0.954	0.888	0.816	0.728	0.38	0.574	0.816	0.892	0.484	
F _{IS}	-0.018	0.008	0.198*	-0.051	0.01	0.039	0.051	-0.085	-0.062	0.03	0.06	0.016
S. cabrilla, BL												
n	30	30	30	30	30	29	30	30	30	30	30	
а	7	8	20	12	7	8	3	5	9	12	4	8.636
Rs	6.8	7.863	19.719	11.73	6.867	7.861	2.997	4.93	8.863	11.723	3.933	8.48
Ho	0.553	0.739	0.833	0.773	0.767	0.592	0.2	0.55	0.767	0.783	0.383	
H _E	0.579	0.771	0.952	0.829	0.763	0.64	0.215	0.621	0.799	0.822	0.401	
F _{IS}	0.038	0.094	0.251*	0.112	-0.004	0.117	0.072	0.148*	0.033	0.087	0.051	0.09

	Table S5. Summary	y statistics fo	or microsatellite	loci among	sampling	collections of	O. melanura specie
--	-------------------	-----------------	-------------------	------------	----------	----------------	--------------------

	Locus											
Species	Omel2	Omel3	Omel20	Omel27	Omel38	Omel54	Omel58	Omel61	Overall			
O. melanura, HE												
n	43	40	41	43	40	43	43	41				
a	15	10	3	13	10	16	8	15	11.25			
Rs	12.94	9.215	2.785	12.254	8.751	14.407	6.882	13.676	10.113			
Ho	0.868	0.872	0.186	0.877	0.83	0.851	0.744	0.884				
H _E	0.925	0.885	0.23	0.925	0.86	0.906	0.785	0.904				
F _{IS}	0.121*	0.086	0.088	0.051	0.106	0.115*	0.035	0.145	0.093			
<i>O. melanura</i> , CG												
n	43	43	41	41	43	41	43	42				
a	17	8	3	15	10	16	9	15	11.62			
Rs	14.939	8.351	2.511	14.632	8.646	14.021	7.786	13.164	10.50			
Ho	0.905	0.868	0.22	0.893	0.744	0.845	0.721	0.891				
H _E	0.908	0.887	0.223	0.906	0.833	0.928	0.746	0.927				
Fis	0.003	0.019	0.088	0.137	0.166	0.122*	0.053	0.045	0.079			
<i>O. melanura</i> , MA												
n	46	45	47	47	45	47	46	46				
a	17	8	3	14	13	16	12	15	12.25			
Rs	15.856	7.836	2.816	13.742	13.426	14.955	8.481	14.453	11.446			
Ho	0.934	0.812	0.085	0.896	0.833	0.865	0.673	0.717				
H _E	0.917	0.827	0.103	0.913	0.852	0.889	0.732	0.919				
F _{IS}	-0.022	0.095	0.025	0.01	0.036	0.038	0.08	0.22	0.060			
<i>O. melanura</i> , BL												
n	34	34	34	33	34	31	34	34				
a	13	9	3	14	15	16	9	17	12			
Rs	11.047	8.793	3	13.917	14.028	14.587	8.404	15.152	11.116			
Ho	0.776	0.872	0.378	0.859	0.861	0.848	0.788	0.911				
H _E	0.837	0.905	0.385	0.892	0.927	0.926	0.838	0.916				
F _{IS}	0.117	0.021	0.019	0.113*	0.137*	0.081	0.043	0.004	0.066			

Table S6. Summar	y statistics fo	r microsatellite	loci among	sampling	collections of	T. delaisi	species

	LOCUS											
Species	Td01	Td02	Td04	Td05	Td06	Td07	Td08	Td09	Td10	Td11	Overall	
T. delaisi, HE												
n	32	32	34	33	32	34	33	34	34	35		
а	14	12	19	27	31	8	23	9	31	10	18.4	
Rs	13.905	11.875	18.437	26.561	30.559	7.735	22.624	8.558	29.722	9.507	17.948	
Ho	0.938	0.969	0.884	0.974	0.968	0.794	0.843	0.618	0.971	0.486		
H _E	0.906	0.956	0.92	0.961	0.959	0.76	0.933	0.701	0.966	0.531		
F _{IS}	-0.034	-0.033	0.099	-0.03	-0.032	-0.061	0.127*	0.131*	-0.036	0.087	0.021	
T. delaisi, CG												
n	33	32	33	32	32	32	31	32	32	32		
a	14	13	17	25	23	7	26	6	27	8	16.6	
Rs	13.815	12.843	16.801	24.684	22.778	6.969	26	5.968	26.652	7.938	16.444	
Ho	0.879	0.906	0.909	0.906	0.875	0.684	0.933	0.531	0.875	0.73		
H _E	0.904	0.882	0.873	0.927	0.953	0.774	0.952	0.727	0.936	0.694		
F _{IS}	0.028	-0.092	-0.041	0.023	0.081	0.115*	0.052	0.249*	0.083	-0.081	0.041	
T. delaisi, MA												
n	42	41	42	42	42	42	42	42	42	42		
а	16	12	18	25	24	7	20	5	26	7	16	
Rs	14.146	10.661	15.894	22.799	21.505	6.456	18.27	4.738	23.228	6.992	14.468	
Ho	0.881	0.814	0.881	0.952	0.881	0.548	0.891	0.643	0.957	0.738		
HE	0.9	0.734	0.891	0.95	0.938	0.615	0.922	0.564	0.946	0.71		
F _{IS}	0.022	-0.125	0.012	-0.002	0.06	0.09	0.094	0.375*	-0.058	-0.039	0.042	
<i>T. delaisi</i> , BL												
n	47	47	47	46	47	47	47	47	47	47		
a	12	16	20	25	31	8	29	9	27	10	18.7	
Rs	11.28	15.416	17.867	22.505	26.374	6.865	24.589	8.181	23.897	9.383	16.635	
Ho	0.872	0.887	0.915	0.978	0.915	0.702	0.845	0.362	0.894	0.681		
H _E	0.876	0.913	0.917	0.936	0.961	0.683	0.951	0.749	0.923	0.735		
F _{IS}	0.005	0.038	0.003	-0.045	0.046	-0.042	0.114*	0.513*	0.063	0.062	0.075	

Table S7. Summar	y statistics	for microsatellite	loci among	sampling	collections o	f <i>A. i</i>	imberbis	species
------------------	--------------	--------------------	------------	----------	---------------	---------------	----------	---------

Species	Locus								
	Aimb14	Aimb17	Aimb2	Aimb22	Aimb28	Aimb29	Aimb41	Aimb74	Overall
A. imberbis, HE									
n	32	31	32	32	32	32	32	31	
а	13	20	8	5	7	13	15	9	11.25
Rs	12.874	20	7.968	5	7	12.874	14.842	9	11.194
Ho	0.843	0.806	0.75	0.312	0.741	0.812	0.812	0.709	
H _E	0.876	0.933	0.771	0.646	0.79	0.879	0.866	0.727	
F _{IS}	0.032	0.138*	0.028	0.505*	0.089	0.064	0.055	-0.005	0.113
A. imberbis, CG									
n	48	48	48	45	48	47	48	47	
а	13	20	8	5	6	18	14	8	11.5
Rs	11.729	18.599	7.926	5	5.863	15.91	11.955	7.609	10.573
Ho	0.854	0.812	0.77	0.5	0.685	0.914	0.784	0.744	
H _E	0.879	0.939	0.805	0.64	0.723	0.901	0.841	0.644	
F _{IS}	0.024	0.137*	0.065	0.174*	0.059	-0.016	0.097	-0.179	0.045
A. imberbis, MA									
n	46	42	48	47	48	48	48	48	
а	10	21	7	6	8	18	7	8	10.625
Rs	9.473	19.498	6.712	5.621	7.518	15.533	6.518	7.263	9.767
Ho	0.774	0.603	0.687	0.404	0.77	0.896	0.729	0.541	
HE	0.833	0.934	0.736	0.622	0.822	0.895	0.679	0.624	
F _{IS}	0.048	0.437*	0.087	0.35*	0.057	-0.001	-0.109	0.133*	0.125
A. imberbis, BL									
n	47	47	46	42	47	45	46	47	
а	14	25	7	6	8	16	15	9	12.5
Rs	12.889	22.961	6.957	5.737	7.531	14.36	12.595	7.828	11.357
Ho	0.872	0.872	0.772	0.412	0.872	0.862	0.841	0.672	
H _E	0.836	0.938	0.843	0.64	0.749	0.873	0.872	0.728	
F _{IS}	0.084	0.089	0.112*	0.583*	-0.052	0.037	0.067	0.011	0.116

	Locus								
Species	St138	St143	St155	St222	St287	St368	St245	St336	Overall
S. tinca, HE									
n	37	37	39	39	40	39	37	39	
а	15	9	11	10	9	17	12	13	12
Rs	15	9	10.897	9.895	8.915	16.791	11.987	12.879	11.92
Ho	0.568	0.749	0.897	0.821	0.825	0.886	0.872	0.845	
HE	0.911	0.788	0.883	0.83	0.796	0.914	0.896	0.856	
F _{IS}	0.378*	0.114	-0.023	0.005	-0.036	0.075	0.084	0.091	0.086
S. tinca, CG									
n	54	51	58	57	57	55	54	57	
а	17	11	13	12	11	17	15	13	13.625
Rs	15.625	10.916	12.174	10.847	9.471	15.448	14.724	12.677	12.735
Ho	0.759	0.843	0.897	0.895	0.789	0.836	0.847	0.798	
H _E	0.926	0.86	0.891	0.825	0.786	0.89	0.86	0.824	
Fis	0.179*	0.018	-0.005	-0.085	-0.008	0.061	0.008	0.027	0.024
S. tinca, MA									
n	45	47	47	47	47	46	45	47	
a	15	12	11	12	9	17	12	11	12.375
Rs	14.575	11.778	10.903	10.934	8.566	16.701	11.878	10.902	12.029
Ho	0.6	0.915	0.83	0.745	0.723	0.843	0.864	0.757	
HE	0.902	0.886	0.878	0.796	0.793	0.904	0.878	0.769	
F _{IS}	0.332*	-0.032	0.05	0.066	0.076	0.133*	0.06	0.078	0.095
<i>S. tinca</i> , BL									
n	51	49	51	51	45	50	49	51	
а	19	12	13	13	10	16	13	17	14.125
Rs	17.092	11.446	12.554	11.802	9.584	15.716	12.677	15.098	13.246
Ho	0.529	0.878	0.882	0.726	0.8	0.898	0.915	0.773	
H _E	0.907	0.874	0.894	0.8	0.792	0.926	0.927	0.784	
F _{IS}	0.414*	-0.003	0.013	0.123*	-0.012	0.066	0.012	0.015	0.078