Supporting Information

Recognition-Domain Focused (RDF) Chemosensors: Versatile and Efficient Reporters of Protein Kinase Activity

Elvedin Luković, Juan A. González-Vera and Barbara Imperiali*

Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139

TABLE OF CONTENTS	PAGE
I. General information	S2
II. Instrumentation	S2
III. Fmoc-C(Sox[TBDPS])-OH synthesis	S3
a. Fmoc-Cys-OAllyl	S3
b. Fmoc-Cys(Sox[TBDPS])-OAllyl	S4
c. Fmoc-Cys(Sox[TBDPS])-OH	S5
IV. Peptide synthesis	S 6
a. Coupling chemistry and conditions	S6
b. On-resin alkylation of peptides with Sox-Br	S6
c. Side chain deprotection and cleavage from resin	S7
d. Characterization data for peptides	S7
V. Stock solutions	S 8
VI. Fluorescence experiments	S9
a. Spectral comparison of phosphorylated and unphosphorylated peptides	S9
b. Calculation of Z' factors	S14
c. Determination of Mg^{2+} dissociation constants (K _D)	S14
d. Fluorescence intensity dependence on [ATP] and $[Mg^{2+}]$	S16
e. Recombinant enzyme assay protocols	S18
f. Determination of kinetic constants from fluorescence data	S19
g. vvs. [S] plots	S21
h. Assays with BTF probes for $PKC_{\beta I}$ and PKC_{δ}	S24
i. HPLC and MS data for kinase reactions	S25
VII. NMR spectra	S26
VIII. HPLC chromatograms	S28
IX. References	S28

I. General information

Unless otherwise noted, all solvents and reagents were obtained commercially and used without further purification. N^{α} -Fmoc-protected amino acids [Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Cyc(Mmt)-OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(PO(OBn)OH)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Thr(PO(OBn)OH)-OH, Fmoc-Val-OH][§] were purchased from Novabiochem. Whenever anhydrous and/or degassed CH₂Cl₂ was necessary, it was distilled from calcium hydride and degassed by bubbling argon for at least 20 min. Analytical TLC was performed on silica gel 60 F_{254} precoated plates (EMD Chemicals Inc.) and visualized by UV. Flash column chromatography was performed as previously described¹ using forced flow of the indicated solvent on AdTech Flash Silica Gel (32-60 µm packing, 60 Å pore diameter, Adedge Technologies). Organic solutions were concentrated in vacuo by rotary evaporation at ~10 Torr (house vacuum) at 25-40 °C, then at ~0.5 Torr (vacuum pump), unless otherwise indicated. Peptides were purified *via* preparative reverse-phase HPLC employing a gradient of solvents A (H₂O with 0.1% v/v TFA) and B (CH₃CN with 0.1% v/v TFA). Compounds were characterized by ¹H and ¹³C NMR and mass spectroscopy. Peptide purity was determined by analytical reverse-phase HPLC.

II. Instrumentation

NMR: ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz Avance spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to CDCl₃ (7.26 ppm for ¹H and 77.0 ppm for ¹³C). Coupling constants (*J*) are reported in Hertz (Hz) and multiplicities are abbreviated as singlet (s), doublet (d), doublet of doublets (dd), triplet (t) and multiplet (m).

HPLC: HPLC was carried out on Waters Prep LC 4000 System or Waters Delta 600 System equipped with Waters 2487 dual wavelength absorbance detectors. Columns used: C₁₈ analytical

[§] Abbreviations: Abl: Abelson kinase, ATP: adenosine triphosphate, BME: β-mercaptoethanol, Bn: benzyl, tBu: tbutyl, Boc: t-butoxycarbonyl, BSA: bovine serum albumin, BTF: β-turn focused, DIEA: diisopropylethylamine, DMF: N.N-dimethylformamide, DMSO: dimethyl sulfoxide, DTT: dithiothreitol, EDT: 1,2-ethanedithiol, EDTA: ethylenediaminetetraacetic acid, EGTA: glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid, ERK1/2: extracellular signal-regulated kinase 1/2, ESI-MS: Electrospray Ionization Mass Spectrometry, Fmoc: 9fluorenylmethoxycarbonyl, FPR: fluorescence plate reader, HEPES: 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid, HOAt: 7-aza-1-hydroxybenzotriazole, HOBt: 1-hydroxybenzotriazole, HPLC: high performance liquid chromatography, HRMS: high resolution mass spectrometry, IRK: insulin receptor kinase, MALDI-TOF MS: Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, MK2: mitogen-activated protein kinase-activated protein kinase-2, Mmt: 4-methoxytrityl, NMR: Nuclear Magentic Resonance, Pbf: 2,2,4,6,7pentamethyldihydrobenzofuran-5-sulfonyl, PKA: protein kinase A, PKC: protein kinase C, PyAOP: (7azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, PvBOP: Benzotriazol-1-vloxytripyrrolidinophosphonium hexafluorophosphate, RDF: recognition-domain focused, Sox-Br: 2-bromomethyl-8t-butyldiphenylsilyloxy-5-(N,N-dimethyl)sulfonamidoquinoline, SPPS: solid-phase peptide synthesis, Src: sarcoma kinase, TFA: trifluoroacetic acid, TIS: triisopropylsilane, TLC: thin-layer chromatography, TNBS: 2,4,6trinitrobenzene sulfonic acid. UV: Ultraviolet.

(flow rate = 1 mL/min), Beckman Ultrasphere ODS, 5 μ m, 150 x 4.6 mm; C₁₈ preparatory (flow rate = 15 mL/min), YMC-Pack Pro, 5 μ m, 250 x 20 mm.

ESI-MS: Applied Biosystems Mariner mass spectrometer.

MALDI-TOF MS: PerSeptive Biosystems Voyager MALDI-TOF instrument.

HRMS: The Department of Chemistry Instrumentation Facility (DCIF), MIT.

UV-Vis Spectrophotometer: Shimadzu UV-2401PC.

Fluorometer: Fluoromax 3 from Jobin Yvon. Cuvette: Starna Cells (16.100F-Q-10) 100 μ L submicro cuvette, 1 cm path length.

Fluorescence Plate Reader: HTS 7000 Bio Assay Reader from Perkin Elmer. Plate: Corning (3992) assay plate, 96-well, half area, no lid, flat bottom, non-binding surface, non-sterile, white polystyrene.

III. Fmoc-C(Sox[TBDPS])-OH synthesis

a. Fmoc-Cys-OAllyl

ERROR: invalidaccess OFFENDING COMMAND: --filter--STACK: /LZWDecode -filestream-[40 0 0 -144 0 144] true 144 40 -savelevel-