SUPPLEMENTAL INFORMATION

S1: Homotypic fusion between UBQLN-containing cytoplasmic structures.

Time-lapse microscopy was performed on cells transfected with GFP-UBQLN-2. Fusion events between UBQLN-positive structures were captured (frames). The sequence was acquired through IPLab on a Nikon TE300 microscope with a Nikon S Fluor 40x/0.90 objective. The incubation chamber was kept at 37°C during the entire recording time. Frames were taken at 5-second intervals. Movie represents 15 minutes of "real time" (150x actual speed).

S2: Co-immunostaining of UBQLN-2 with endosomal markers.

HeLa cells expressing myc- or GFP- tagged UBQLN-2 were stained for EEA1 (marker for early endosomes), Rab7 or Lamp-1 (markers for late endosomes). Dual staining of UBQLN with each protein was analyzed by microscopy. Scale bar: 10 microns.

<u>S3: Deletion mutagenesis of UBQLN-2 and its effect on colocalization with LC3.</u> Myc-tagged UBQLN-2 Δ UbL and UBQLN-2 Δ UBA deletion mutants were generated and their immunolocalization analyzed in cells co-expressing GFP-LC3.

S4: Recruitment of UBQLN around cytoplasmic aggregates.

Myc-tagged UBQLN (1or 2) was transfected in HeLa cells together with GFP-Htt72 (top and middle row) or GFP-250 (bottom row). Anti myc immunostaining shows UBQLN concentrated around aggregates formed by Huntingtin and GFP-250.

S5: Cell size and granularity of control and UBQLN-KD cells during starvation.

Control and UBQLN-KD cells were transferred to starvation medium, fixed, permeabilized with 70% cold ethanol, and stained with propidium iodide. Cells in G0-G1 were analyzed by flow cytometry for their size (reflected in the forward scatter, or FSC) and their granularity (measured by the side scatter, or SSC). Control and UBQLN-KD cells show comparable cell size (A). However, UBQLN-KD cells show a higher side scatter under starvation compared to controls (B), indicating their higher granularity. This is consistent with a lack of decrease in organelle content during autophagy, and with impaired autophagosomal maturation.

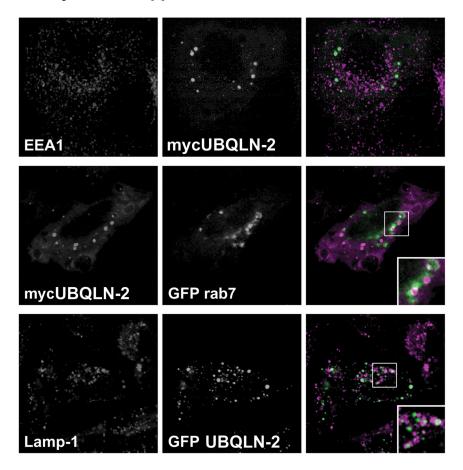
S6: Dual labeling of mitochondria with MitotrackerTM and pshooterTM.

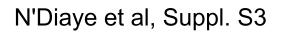
HeLa cells transfected with pshooter[™] (a GFP cDNA cloned downstream of a mitochondrial promoter) were stained with Mitotracker[™], and the localization of each mitochondrial probe analyzed by microscopy.

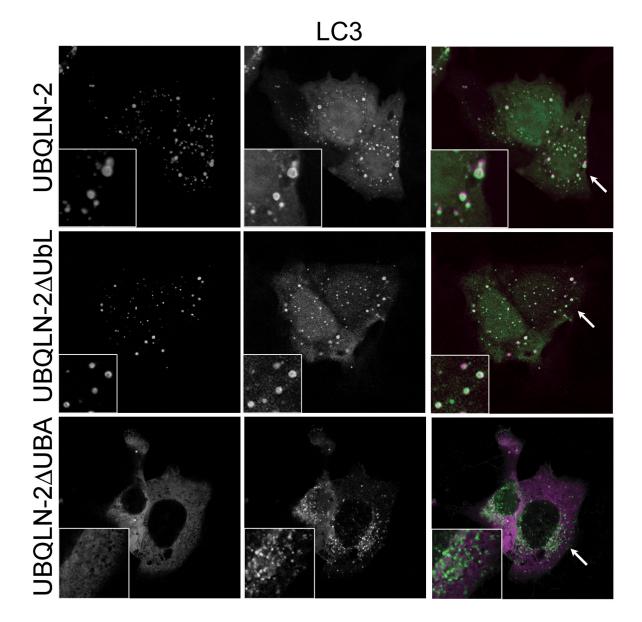
S7: Supplemental materials

1 - Antibodies and reagents

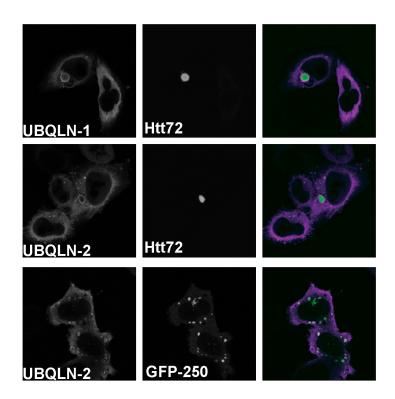
The following antibodies were used: myc (clone 9E10, Upstate Biotechnology), EEA1 (BD Biosciences), Lamp-1a (clone H4A3, ATCC), Atg7 (Santa Cruz Biotech), PLIC-1 (UBQLN-1) and Atg12 (Zymed), LC3 (clone 5F10, Axxora). UBQLN-2 antibody was previously described (Wu et *al*, 1999). Mitrotracker[™] Red, pShooter[™] (pEF/myc/mito/GFP) vector, Alexa- coupled secondary antibodies and Prolong mounting medium were from Invitrogen (Carlsbad, CA). Ubiquilin (PLIC) siRNAs were

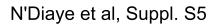

previously described (N'Diaye E *et al*, 2008). Non-silencing siRNA and Atg5 siRNAs were from Dharmacon.

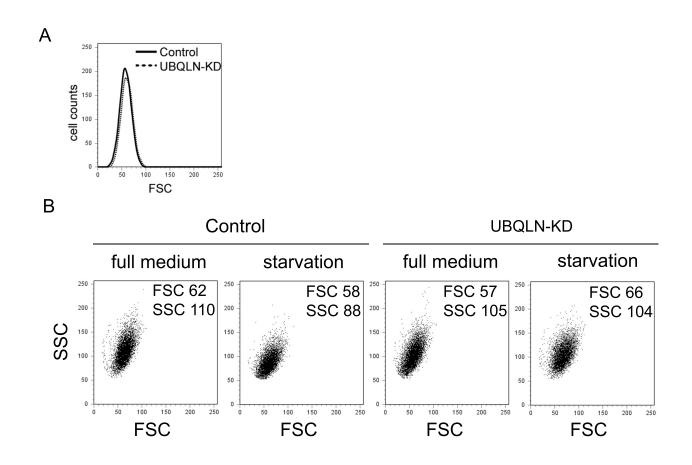

Lentiviral particles expressing shRNAs against Atg7 (target sequence GCCTGCTGAGGAGCTCTCC) were previously described (Fung *et al*, 2007). HeLa cells stably expressing a non-silencing shRNA or Atg7 shRNA were maintained under puromycin selection (2 μ g/ml).

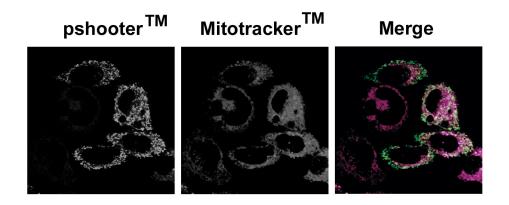

2 - DNA constructs

GFP-rab7 (Q67L) was from Ph. Stahl (Washington U.). GFP-250 was provided by E.
Sztul (U. Alabama, Birmingham). GFP-Htt72 was from S. Finkbeiner (Gladstone
Institute). LC3 cDNA (IMAGE 6185847) was inserted into the pEGFP-C3 vector
(Clontech). Nucleotide sequencing was performed to verify the absence of errors. GFPand myc-tagged UBQLN (PLIC) cDNAs were previously described (N'Diaye E *et al*,
2008; Wu *et al*, 1999). The GFP/mcherry/LC3 cDNA originally obtained from T.
Johanssen (U. of Tromsø, Norway) (Pankiv et al., 2007) was transferred into the pBabe
vector.


N'Diaye et al, Suppl. S2






N'Diaye et al, Suppl. S4

N'Diaye et al, Suppl. S6

