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Supplement 

Statistical vs Bayesian Hypothesis Testing 

We analyzed the data using Bayesian methods because several of the questions 

to be answered in our analysis concern model selection. Model selection involves 

identifying, from a group of appropriate mathematical models, those most strongly 

indicated by the data. When models are not nested (as is the case here), we cannot use 

traditional, frequentist methods.  

Although probabilistic and traditional statistical algorithms produced similar 

results in many cases, the two types of analysis are based on very different calculations. 

Probability-based algorithms for parameter estimation and model selection calculate the 

joint posterior probability distribution over combinations of unknown parameter values, 

integrating over any unwanted, or nuisance, parameters. For example, in comparing the 

three possible slope models for the data of Fig. 5 (Location Experiment: Results and 

Analysis), this meant first calculating the 2-D joint posterior probability distribution for all 

possible pairs of slope and variance values allowed within each model. Calculating the 

probabilities of the models in the model comparison problem requires integrating over all 

possible slope and variance values separately for each model (the three models all 

assume homoscedastic Gaussian error with variance unknown). Because we have 

integrated over all possible parameter values to calculate the model probabilities, these 

probabilities reflect how well each model captures the data, regardless of the 

parameters' values (within the allowed range for that model).  

When comparing models we will, following Jaynes (2003), present the evidence 

for a specific model relative to some specific alternative or class of alternative models, 
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where evidence is defined as 
  
e ! | DI( ) = 10log O ! | DI( )"

#
$
% . It is a function of the odds, 

( ) ( ) ( )| | |O DI p DI p DI! ! != ; where !  is the hypothesis of interest, D is the data, 

and I is background information which specifies the appropriate error model and bounds 

on prior probability distributions. Evidence is measured in decibels (dB), a measure 

familiar to most behavioral and neuroscientists. An additional advantage of using a 

logarithmic measure like evidence is that the terms in the equations simply add. For 

example, if we were interested to know the effect of changing the prior evidence for the 

hypothesis 
 
!

1
 from 0 to 10 dB, we simply add that to the posterior evidence, which in 

turn changes by the same 10 dB. 

All sampling distributions are assigned a Gaussian distribution unless otherwise 

stated. All prior distributions are assigned using Jeffreys rule (1946). This method of 

assigning prior distributions has the advantage that posterior inferences made using a 

Jeffreys prior are invariant under reparameterizations of the prior. Jeffreys rule assigns 

priors proportional to the square root of the Fisher information (Fisher, 1925). The 

Jeffreys prior for some parameter !  is 
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For example, using a Gaussian likelihood function on the space of possible 

samples, the Jeffreys prior for the location parameter ( µ ) is a uniform distribution: 
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Given bounds (a b), the normalized prior probability distribution becomes 

  p(µ | I) = (b ! a)!1 . 

 

Confidence Intervals for Expected Hit Rates 

Here, we provide 95% confidence intervals for the expected hit rates from both 

the Location and Scale experiments. We are providing these values as many readers 

are used to confidence intervals as a means of judging the accuracy of the data. 

However, we must emphasize that these intervals are not relevant to the hypotheses we 

compare in the paper. The frequentist p=.05 criterion cannot be translated into a fixed 

number of dB of evidence for or against some hypothesis. To calculate odds (and 

therefore evidence), one needs two mutually exclusive hypotheses (e.g., sets of possible 

parameter values) that bear on the comparison of interest. That is, we would like the 

ratio of the probability of the hypothesis being correct vs. incorrect. The .05 probability in 

the frequentist criterion is the probability of obtaining a parameter estimate equal to or 

more extreme than that obtained experimentally, conditioned on the truth of the null 

hypothesis. Since that calculation assumed the null hypothesis was true, the result says 

nothing about the probability of the null hypothesis being incorrect, and odds can’t 

properly be calculated for the question of interest. 
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TABLE 1 – Location Experiment: Expected Hit Rates and Confidence Intervals 

 Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 

Condition 1 
0.51 

[0.48 - 0.55] 

0.47 

[0.44 - 0.51] 

0.28 

[0.25 - 0.31] 

0.35 

[0.32 - 0.38] 

0.38 

 [0.35 - 0.42] 

Condition 2 
0.47 

[0.44 - 0.51] 

0.58 

[0.54 - 0.61] 

0.56 

[0.52 - 0.59] 

0.48 

[0.44 - 0.51] 

0.29 

 [0.26 - 0.33] 

Condition 3 
0.41 

[0.37 - 0.45] 

0.56 

[0.52 - 0.59] 

0.58 

[0.55 - 0.62] 

0.46 

[0.42 - 0.49] 

0.40 

 [0.37 - 0.44] 

Condition 4 
0.28 

[0.25 - 0.32] 

0.49 

[0.46 - 0.53] 

0.49 

[0.46 - 0.53] 

0.56 

[0.53 - 0.60] 

0.47 

 [0.43 - 0.50] 

Condition 5 
0.15 

[0.13 - 0.18] 

0.37 

[0.33 - 0.40] 

0.24 

[0.21 - 0.27] 

0.48 

[0.44 - 0.51] 

0.49 

 [0.45 - 0.52] 
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TABLE 2 – Scale Experiment: Expected Hit Rates and Confidence Intervals 

 Strategy 1 Strategy 2 Strategy 3 

Condition 1 
0.58 

[0.56 - 0.61] 

0.62 

[0.60 - 0.65] 

0.57 

[0.54 - 0.60] 

Condition 2 
0.49 

[0.46 - 0.52] 

0.55 

[0.52 - 0.58] 

0.54 

[0.51 - 0.57] 

Condition 3 
0.37 

[0.35 - 0.40] 

0.48 

[0.45 - 0.51] 

0.48 

[0.45 - 0.50] 

 

 


