Supporting Material

The deep archaeal roots of eukaryotes

Natalya Yutin, Kira S. Makarova, Sergey L. Mekhedov, Yuri I. Wolf, Eugene V. Koonin*

Supplemental Methods

Identification of the core of a protein cluster

Proteins within a cluster of apparent orthologs often exhibit substantial diversity of domain architectures, especially, in eukaryotes. We designed a procedure to extract the maximum region of shared sequence similarity and construct a "core" alignment representing the cluster. This procedure was applied to all eukaryotic, archaeal and bacterial clusters of putative orthologs analyzed in this work.

Step 1: approximate consensus PSSM. The median length of the sequences comprising a cluster was calculated; sequences shorter than x0.5 or longer than x10 of the median were discarded. The remaining sequences were clustered using the NCBI BLASTCLUST program; BLASTCLUST parameters were iteratively adjusted within the preset limits (from "-S 90 -L 0.85" to "-S 0.3 -L 0.5") aiming to obtain 25 subclusters. Sequences with the lengths closest to the median length of their respective subclusters were selected to represent the subcluster.

The selected representatives were aligned using the MUSCLE program (Edgar 2004). Each alignment column was assigned a homogeneity value by scaling the sum-of-pairs score within the column between those of a homogeneous column (the same residue in all aligned sequences) and a random column (YIW, I. A. Seledtsov IA, KSM, unpublished). Columns with homogeneity of less than

0.2 and/or with more than one-third of gap characters were removed from the alignment. A consensus sequence was created from the alignment. The alignment and its consensus were used as the source of the PSI-BLAST PSSM and the query sequence, respectively (Altschul et al. 1997).

Step 2: mapping the approximate consensus to the original sequences. The alignment and its consensus, obtained at Step 1, were used in a PSI-BLAST search against the database consisting of the original cluster members. Proteins that did not show significant similarity to the query (*e*-value >0.01) were removed. If the unaligned N- and C-terminal fragments of the consensus were shorter than 1/3 of the consensus sequence length, the protein sequence was padded with an appropriate number of residues to match the full length of the consensus sequence. Median length of the protein fragments that showed significant similarity to the core PSSM was computed, and sequences shorter than 1/3 of the median were removed.

Interdomain BLAST searches

For each cluster, core protein sequences were aligned using the MUSCLE program (Edgar 2004). As an additional refining step, all sequences were compared to the alignment consensus in positions with the alignment column homogeneity >0.4. Sequences with similarity to the consensus less than x0.3 of the similarity of consensus to itself were removed from the alignment. After this procedure, columns with homogeneity <0.2 and/or with more than one-third of gap characters were removed. A new consensus sequence was created and added back to the refined alignment.

The alignment with its consensus a the query were used for single-pass PSI-BLAST search (Altschul et al. 1997): eukaryotic PSSMs were run against archaeal or bacterial databases, and the respective reciprocal searches were performed. For each cluster in the target database the score against the query cluster was determined as the average score of the cluster members. Target clusters were ranked according to these scores. Reciprocal best hits between eukaryotic and archaeal and eukaryotic and bacterial clusters were recorded.

Phylogenetic analysis

First-round phylogenetic analysis. Initial phylogenic analysis and the choice of the best (for each alignment) amino-acid substitution matrix were performed using the PhyML software (Guindon and Gascuel 2003). Each alignment was run with 8 substitution models offered by PhyML for amino-acid sequences: JTT (Jones, Taylor, and Thornton 1992), Dayhoff (Dayhoff, Schwartz, and Orcutt 1978), WAG (Whelan and Goldman 2001), DCMut (Kosiol and Goldman 2005), RtREV (Dimmic et al. 2002), CpREV (Adachi et al. 2000) VT (Muller and Vingron 2000), and Blosum62 (Henikoff and Henikoff 1992). Two mitochodrial models (mtREV and MtMam) also available in PhyML were not used. For each of 8 substitution models, a Maximum Likelihood tree was constructed using with following parameters: number of relative substitution rate categories was 4; the proportion of invariable sites and alpha (gamma distribution parameter) were adjustable (estimated). The best tree was chosen by maximum log-likelihood of eight trees. The substitution model used for the best tree was chosen for the next round of phylogenetic analysis.

Selection of representatives for the second-round Maximum Likelihood phylogenetic analysis. Maximum-Likelihood (ML) phylogenetic analysis is a very computationally-intensive procedure with resource usage critically dependent on the number of sequences. Thus, reduction of the number of sequences is desirable. Moreover, with the horizontal gene transfer rampant in the prokaryotic world and, possibly, in unicellular eukaryotes as well (Doolittle 1999), not all sequences are equally suited to represent their taxonomic group (obviously, a gene in a bacterial genome that has recently been acquired from archaea cannot be a proper representative of the respective bacterial branch). Ideally, it is desirable to select a "maximally diverse" subset of "typical" sequences, representing the "native phylogenetic position" of a given clade. Operationally, we aim to approximate these goals using the following procedure.

A PhyML-tree was midpoint-rooted using the RETREE program from the PHYLIP package (Felsenstein 1996). Each terminal node (leaf) of the rooted tree was labeled with one of the four taxonomic labels: Crenarchaeota, Euryarchaeota, Eukaryota, or Bacteria (hereinafter CA, EA, E and B; *Nanoarchaeon equitans* was artificially placed within Euryarchaeota for the purpose of this analysis).

Each leaf was given a weight equal to the square root of the number of individual genomes in the subcluster (as the leaves in the PhyML tree are, generally, representatives of similarity-based subclusters). In a leaves-to-root pass over the tree, each internal node was assigned 4 weights (for CA, EA, E and B) which represented the sum of the corresponding weights of the descendant nodes. Each of these weights was then normalized by the taxon-specific sum across the tree. Note that by design of this procedure the root node acquires the weight of 1.0 for each of the four taxa. Each internal node was then formally labeled with a taxon that had the maximum taxon-specific weight.

For each node of the tree, two indices, "representativeness" (*R*) and "purity" (*P*), - were computed for the titular taxon. *R* is simply the taxon-specific weight, i.e., the fraction of all taxon members that descend from this node. *P* reflects the number of representatives of other taxa descend from this node and is computed as one minus the average weight of other taxa at this node. Obviously, at the leaves P=1 (because a terminal node is assigned to a single taxon); the same holds for all subtrees where leaves are taxonomically homogeneous. In an ideal tree for each taxon, there exists a node with R=1 and P=1 (i.e. all members of a taxon are monophyletic on a taxonomically homogeneous subtree). In the real trees, each node was assigned a "quality" index $Q=RP^2$, and for each taxon, the node with the maximum value of *Q* that is not a parent of a selected node for another taxon with a higher *Q* index was identified. The 4 selected nodes (one for each of CA, EA, E and B) represented the "largest nearly homogeneous" clades for the respective taxa and served as the sources of the representatives.

For the purpose of selection of representatives, the four representative nodes were treated as roots of the corresponding independent (sub)trees. Leaves from the non-titular taxa were removed and root-to-leaf as well as leaf-to-leaf distances were computed for the remaining leaves. Optimal root-to-leaf distance was set to that of the 33rd percentile of all root-to-leaf distances (i.e., favoring relatively slowly evolving genes but not the most slowly evolving ones). Each terminal node was "rewarded" for the minimum deviation of its root-to-leaf distance from the optimum value (computed as the ratio of the smaller of the two values to the larger one) and for the distance to the earlier selected representatives (the shortest distance was used). The leaf with the largest product

of the two rewards was added to the pool of selected representatives; leaf-to-leaf distance rewards were recomputed (as the selected set changed) and the process was repeated until the required number of representatives was taken or the pool of candidates was exhausted.

Second-round Maximum Likelihood trees. Representative sequences were re-aligned using the MUSCLE program (Edgar 2004). Maximum Likelihood trees were constructed using the TreeFinder program (Jobb, von Haeseler, and Strimmer 2004), with the evolutionary model chosen by PhyMLtree log-likelihood comparisons with estimated site rate heterogeneity. Tree topologies were compared using the TreeFinder program according to either their expected likelihood weights (Strimmer and Rambaut 2002) or by the Approximately Unbiased test (AU) *p*-value (Shimodaira 2002).

References

- Adachi, J., P. J. Waddell, W. Martin, and M. Hasegawa. 2000. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol **50**:348-358.
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res **25**:3389-3402.
- Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in proteins *in* M. O. Dayhoff, ed. Atlas of Protein Sequence and Structure Nat. Biomed. Res. Foundation, Washington, DC.
- Dimmic, M. W., J. S. Rest, D. P. Mindell, and R. A. Goldstein. 2002. rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol **55**:65-73.
- Doolittle, W. F. 1999. Lateral genomics. Trends Cell Biol 9:M5-8.
- Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res **32**:1792-1797.
- Felsenstein, J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol **266**:418-427.
- Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol **52**:696-704.
- Henikoff, S., and J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A **89**:10915-10919.
- Jobb, G., A. von Haeseler, and K. Strimmer. 2004. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol **4**:18.
- Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275-282.
- Kosiol, C., and N. Goldman. 2005. Different versions of the Dayhoff rate matrix. Mol Biol Evol 22:193-199.
- Muller, T., and M. Vingron. 2000. Modeling amino acid replacement. J Comput Biol 7:761-776.
- Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492-508.
- Strimmer, K., and A. Rambaut. 2002. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci 269:137-142.
- Whelan, S., and N. Goldman. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol **18**:691-699.

Supplemental references

Table S1. The statistics of tested topologies for 136 trees.

		Lo	g-Likelihoo	od ^a		AU ^b			ELW ^c		c d
Family		С	CA	EA	С	CA	EA	С	CA	EA	2
arCOG00018- KOD03974- COG00063	G; Predicted sugar kinase	-12572	-12582	-12582	0.790	0.212	0.301	0.770	0.086	0.144	
arCOG00027- KOD01383- COG00076	E; Glutamate decarboxylase and related PLP-dependent proteins	-15951	-15956	-15955	0.686	0.304	0.446	0.622	0.133	0.245	
arCOG00029- KOD01377- COG00461	F; Orotate phosphoribosyltransferase	-7557	-7562	-7567	0.791	0.351	0.193	0.676	0.216	0.108	
arCOG00042- KOD02840- COG00037	D; Predicted ATPase of the PP-loop superfamily implicated in cell cycle control	-11939	-11942	-11939	0.657	0.371	0.534	0.376	0.297	0.328	
arCOG00063- KOD02387- COG00504	F; CTP synthase (UTP-ammonia lyase)	-21281	-21296	-21270	0.276	0.000	0.729	0.272	0.001	0.727	
arCOG00086- KOD00026- COG00512	E; Anthranilate/para-aminobenzoate synthases component II	-7505	-7506	-7506	0.744	0.292	0.387	0.532	0.197	0.271	
arCOG00090- KOD03179- COG00518	F; GMP synthase - Glutamine amidotransferase domain	-7330	-7340	-7340	0.853	0.219	0.200	0.835	0.083	0.082	
arCOG00109- KOD03191- COG02890	J; Methylase of polypeptide chain release factors	-8797	-8799	-8795	0.444	0.311	0.729	0.264	0.216	0.520	
arCOG00110- KOD02904- COG02813	J; 16S RNA G1207 methylase RsmC	-7773	-7775	-7774	0.670	0.354	0.472	0.443	0.185	0.372	
arCOG00245- KOD02380- COG00287	E; Prephenate dehydrogenase	-11111	-11110	-11112	0.526	0.609	0.402	0.272	0.522	0.206	
arCOG00312- KOD00854- COG00450	O; Peroxiredoxin	-7593	-7593	-7593	0.644	0.489	0.262	0.457	0.333	0.209	

arCOG00324- KOD01343- COG00123 arCOG00350-	B; Deacetylases including yeast histone deacetylase and acetoin utilization protein	-13049	-13049	-13048	0.267	0.281	0.807	0.190	0.191	0.619	
KOD02423- COG01161 arCOG00402-	R; Predicted GTPases	-10552	-10549	-10548	0.351	0.472	0.708	0.291	0.257	0.452	
KOD04163- COG00442 arCOG00403-	J; Prolyl-tRNA synthetase	-20255	-20266	-20265	0.773	0.325	0.322	0.659	0.180	0.161	А
KOD02509- COG00172 arCOG00405-	J; Seryl-tRNA synthetase	-15937	-15930	-15935	0.218	0.849	0.116	0.211	0.728	0.061	
KOD02298- COG00423 arCOG00406-	J; Glycyl-tRNA synthetase (class II)	-22370	-22364	-22366	0.330	0.614	0.509	0.115	0.434	0.452	
KOD00556- COG00017 arCOG00410-	J; Aspartyl/asparaginyl-tRNA synthetases	-19133	-19141	-19142	0.783	0.282	0.095	0.711	0.252	0.037	
KOD02784- COG00016 arCOG00412-	J; Phenylalanyl-tRNA synthetase alpha subunit	-18167	-18165	-18165	0.120	0.509	0.578	0.098	0.426	0.476	
KOD02472- COG00072 arCOG00415-	J; Phenylalanyl-tRNA synthetase beta subunit	-26797	-26802	-26800	0.603	0.174	0.490	0.579	0.071	0.349	
KOD01434- COG00468 arCOG00469-	L; RecA/RadA recombinase	-9651	-9645	-9644	0.241	0.255	0.874	0.228	0.254	0.518	EA
KOD00991- COG00470 arCOG00474-	L; ATPase involved in DNA replication	-12123	-12123	-12122	0.499	0.530	0.555	0.387	0.219	0.394	
KOD04410- COG00212 arCOG00476-	H; 5-formyltetrahydrofolate cyclo-ligase H; 4-hydroxybenzoate	-8445	-8446	-8446	0.637	0.391	0.509	0.353	0.207	0.440	
KOD07663- COG00382 arCOG00487-	polyprenyltransferase and related prenyltransferases	-13049	-13059	-13058	0.940	0.000	0.067	0.917	0.012	0.071	
KOD04426- COG00018	J; Arginyl-tRNA synthetase	-26893	-26896	-26904	0.557	0.468	0.029	0.553	0.435	0.012	
arCOG00488- KOD01636-	L; DNA polymerase sliding clamp subunit (PCNA homolog)	-12905	-12910	-12913	0.705	0.371	0.169	0.662	0.290	0.048	

arCOG00494- KOD04777- COG00136	E; Aspartate-semialdehyde dehydrogenase	-13687	-13686	-13687	0.449	0.661	0.437	0.241	0.433	0.327
arCOG00618- KOD03055- COG00106	E; Phosphoribosylformimino-5- aminoimidazole carboxamide ribonucleotide (ProFAR) isomerase	-9977	-9977	-9974	0.306	0.392	0.727	0.135	0.311	0.554
arCOG00770- KOD01132- COG01199	K; Rad3-related DNA helicases	-11450	-11452	-11450	0.626	0.342	0.517	0.382	0.154	0.464
arCOG00779- KOD01742- COG00200	J; Ribosomal protein L15	-6115	-6125	-6123	0.824	0.115	0.258	0.783	0.055	0.161
arCOG00807- KOD00434- COG00060	J; Isoleucyl-tRNA synthetase	-40464	-40458	-40480	0.316	0.684	0.000	0.325	0.675	0.000
arCOG00809- KOD00437- COG00495	J; Leucyl-tRNA synthetase	-38538	-38546	-38544	0.756	0.355	0.383	0.476	0.256	0.268
arCOG00810- KOD01247- COG00143	J; Methionyl-tRNA synthetase	-23962	-23933	-23971	0.013	0.994	0.000	0.014	0.974	0.013
arCOG00833- KOD03235- COG00456	R; Acetyltransferases	-5439	-5438	-5439	0.274	0.669	0.462	0.207	0.505	0.288
arCOG00874- KOD01123- COG01061	K; DNA or RNA helicases of superfamily II	-17543	-17545	-17544	0.598	0.477	0.497	0.362	0.233	0.405
arCOG00914- KOD01402- COG04992	E; Ornithine/acetylornithine aminotransferase	-15789	-15794	-15792	0.671	0.418	0.459	0.436	0.276	0.288
arCOG00973- KOD01122- COG00144	J; tRNA and rRNA cytosine-C5-methylases	-9298	-9298	-9284	0.077	0.079	0.947	0.048	0.025	0.928
arCOG00976- KOD01661- COG02518	O; Protein-L-isoaspartate carboxylmethyltransferase	-7840	-7837	-7838	0.194	0.832	0.342	0.178	0.546	0.276
arCOG00987- KOD02529- COG00130	J; Pseudouridine synthase	-7490	-7491	-7484	0.139	0.051	0.902	0.128	0.042	0.830

arCOG01001-										
KOD02775-	J; Methionine aminopeptidase	-11938	-11938	-11939	0.534	0.618	0.345	0.363	0.431	0.206
COG00024										
arCOG01122-										
KOD03075-	G; Ribose 5-phosphate isomerase	-9185	-9183	-9185	0.400	0.654	0.478	0.223	0.522	0.255
COG00120										
arCOG01136-										
KOD02241-	R; EMAP domain	-4701	-4707	-4707	0.786	0.288	0.299	0.750	0.125	0.125
COG00073	,									
arCOG01141-										
KOD03325-	R: Predicted phosphoesterase	-6959	-6956	-6955	0.314	0.567	0.618	0.194	0.365	0.441
COG00622	,									
arCOG01143-										
KOD00372-	T; Diadenosine tetraphosphatase and related	-8321	-8320	-8322	0.558	0.582	0.357	0.335	0.499	0.166
COG00639	serine/threonine protein phosphatases									
arCOG01163-										
KOD00785-	C; Isocitrate/isopropylmalate	-14990	-14976	-14992	0.082	0.931	0.116	0.040	0.863	0.097
COG00473	dehydrogenase	1.,,,,,	11,770	1	0.002	0.901	01110	01010	0.000	0.077
arCOG01169-										
KOD02670-	G: Enolase	-15059	-15065	-15075	0.685	0.341	0.029	0.669	0.321	0.010
COG00148	0, 200000	10000	10000	10070	0.000	01011	0.0_2	0.007	0.021	0.010
arCOG01179-										
KOD03403-	J: Translation initiation factor 1 (IF-1)	-2806	-2808	-2806	0.548	0.147	0.547	0.432	0.089	0.479
COG00361		-000	-000	-000	0.010	011 17	01017	01102	0.000	0,
arCOG01183-										
KOD02708-	O; Metal-dependent proteases with possible	-10700	-10699	-10701	0.505	0.652	0.407	0.268	0.407	0.325
COG00533	chaperone activity	10700	100//	10701	0.000	0.002	01107	0.200	01107	0.020
arCOG01225-										
KOD01532-	R; GTPase SAR1 and related small G	-10445	-10448	-10448	0.889	0.172	0.161	0.753	0.123	0.124
COG01100	proteins	10110	10110	10110	0.000	011/2	01101	01100	01120	0.12
arCOG01227-										
KOD00781-	U: Signal recognition particle GTPase	-13092	-13090	-13090	0.088	0.497	0.566	0.061	0.458	0.481
COG00552		10072	10070	10070	0.000	01127	0.000	0.001	01.00	01101
arCOG01228-										
KOD00780-	U: Signal recognition particle GTPase	-19259	-19262	-19261	0 754	0 349	0 375	0 489	0 310	0 201
COG00541		17207	1/202	1/201	01701	01017	01070	01107	0.010	0.201
arCOG01257-										
KOD00357-	O: Chaperonin GroEL (HSP60 family)	-20007	-20009	-20009	0.802	0 289	0 184	0.662	0.213	0.125
COG00459		_0007	_0000	_0000	0.002	0.207	0.101	0.002	0.210	0.120
arCOG01292-	E: NADPH-dependent glutamate synthase									
KOD01800-	beta chain and related oxidoreductases	-14745	-14750	-14750	0.874	0.205	0.159	0.748	0.160	0.092

COG00493

arCOG01307- KOD00739- COG00464	O; ATPases of the AAA+ class	-12427	-12427	-12428	0.560	0.536	0.185	0.441	0.414	0.145
arCOG01351- KOD00455- COG00460	E; Homoserine dehydrogenase	-13530	-13516	-13526	0.160	0.891	0.066	0.157	0.805	0.038
arCOG01352- KOD02250- COG00334	E; Glutamate dehydrogenase/leucine dehydrogenase	-16014	-16024	-16024	0.981	0.033	0.036	0.947	0.028	0.024
arCOG01358- KOD04355- COG00621	J; 2-methylthioadenine synthetase	-20219	-20219	-20216	0.395	0.344	0.727	0.334	0.171	0.496
arCOG01371- KOD00747- COG01088	M; dTDP-D-glucose 4 6-dehydratase	-11623	-11621	-11624	0.512	0.593	0.466	0.227	0.460	0.313
arCOG01482- KOD03008- COG00157	H; Nicotinate-nucleotide pyrophosphorylase	-10997	-11013	-11013	0.914	0.111	0.140	0.898	0.048	0.054
arCOG01527- KOD01957- COG00550	L; Topoisomerase IA	-28055	-28060	-28058	0.665	0.243	0.448	0.522	0.087	0.391
arCOG01529- KOD01175- COG00365	I; Acyl-coenzyme A synthetases/AMP- (fatty) acid ligases	-26159	-26151	-26168	0.229	0.867	0.096	0.185	0.753	0.062
arCOG01532- KOD01602- COG00020	I; Undecaprenyl pyrophosphate synthase	-10667	-10663	-10661	0.365	0.483	0.686	0.268	0.272	0.460
arCOG01559- KOD00469- COG00480	J; Translation elongation factors (GTPases)	-30537	-30538	-30539	0.636	0.478	0.207	0.445	0.452	0.103
arCOG01560- KOD01144- COG00532	J; Translation initiation factor 2 (IF-2; GTPase)	-21751	-21743	-21751	0.415	0.674	0.415	0.234	0.603	0.163
arCOG01575- KOD01068- COG00689	J; RNase PH	-9020	-9031	-9032	0.865	0.201	0.204	0.794	0.080	0.126
arCOG01594- KOD00370- COG00458	E; Carbamoylphosphate synthase large subunit (split gene in MJ)	-38565	-38374	-38564	0.000	0.235	0.000	0.000	1.000	0.000

arCOG01695- KOD02030- COG01293	K; Predicted RNA-binding protein homologous to eukaryotic snRNP	-28872	-28869	-28875	0.284	0.817	0.279	0.152	0.615	0.233	
arCOG01704- KOD00672- COG00452	H; Phosphopantothenoylcysteine synthetase/decarboxylase	-13586	-13612	-13612	0.990	0.018	0.016	0.978	0.008	0.014	
arCOG01706- KOD00558- COG00508	C; Pyruvate/2-oxoglutarate dehydrogenase complex dihydrolipoamide acyltransferase (E2) component and related enzymes	-14333	-14331	-14334	0.437	0.667	0.180	0.319	0.583	0.098	
arCOG01722- KOD03311- COG00099	J; Ribosomal protein S13	-5409	-5409	-5406	0.213	0.208	0.861	0.161	0.161	0.678	
KOD03342- COG00681	U; Signal peptidase I	-5763	-5764	-5764	0.747	0.396	0.283	0.520	0.253	0.227	
arCOG01751- KOD03387- COG01358	J; Ribosomal protein HS6-type (S12/L30/L7a)	-4729	-4730	-4730	0.736	0.256	0.380	0.523	0.215	0.263	
arCOG01/58- KOD00900- COG00051	J; Ribosomal protein S10	-3755	-3753	-3751	0.360	0.329	0.766	0.325	0.185	0.489	
KOD02145- COG00180	J; Tryptophanyl-tRNA synthetase	-14127	-14089	-14127	0.000	0.805	0.000	0.000	1.000	0.000	
KOD03327- COG00125	F; Thymidylate kinase	-8255	-8245	-8253	0.066	0.866	0.172	0.023	0.821	0.157	
KOD01999- COG00250	K; Transcription antiterminator	-7163	-7159	-7161	0.363	0.600	0.535	0.154	0.525	0.321	
arCOG01924- KOD00503- COG00252	E; L-asparaginase/archaeal Glu-tRNAGln amidotransferase subunit D	-14581	-14596	-14596	0.903	0.144	0.150	0.888	0.056	0.056	
arCOG02014- KOD01223- COG00147	E; Anthranilate/para-aminobenzoate synthases component I	-16263	-16275	-16269	0.737	0.000	0.265	0.718	0.002	0.280	
arCOG02208- KOD02831- COG00040	E; ATP phosphoribosyltransferase	-11049	-11050	-11049	0.563	0.147	0.521	0.464	0.119	0.416	
arCOG02297- KOD00975-	E; Branched-chain amino acid aminotransferase/4-amino-4-	-11545	-11540	-11547	0.242	0.802	0.091	0.197	0.767	0.037	

А

COG00115	deoxychorismate lyase									
arCOG02303- KOD06476- COG00496	R; Predicted acid phosphatase	-10274	-10274	-10278	0.674	0.597	0.180	0.417	0.408	0.176
arCOG02431- KOD05042- COG01611	R; Predicted Rossmann fold nucleotide- binding protein	-7053	-7058	-7058	0.815	0.261	0.256	0.767	0.116	0.116
arCOG02833- KOD09166- COG00265	O; Trypsin-like serine proteases typically periplasmic contain C-terminal PDZ domain	-7497	-7498	-7498	0.691	0.324	0.389	0.424	0.273	0.303
arCOG02969- KOD01046- COG00308	E; Aminopeptidase N	-15523	-15524	-15497	0.042	0.063	0.961	0.018	0.056	0.926
arCOG03199- KOD02788- COG00472	M; UDP-N-acetylmuramyl pentapeptide phosphotransferase/UDP-N- acetylglucosamine-1-phosphate transferase	-14145	-14145	-14135	0.119	0.203	0.847	0.053	0.121	0.825
arCOG04050- KOD02519- COG00258	L; 5'-3' exonuclease (including N-terminal domain of PolI)	-12077	-12083	-12078	0.611	0.151	0.511	0.514	0.073	0.413
arCOG04064- KOD02921- COG00750	M; Predicted membrane-associated Zn- dependent proteases 1	-8068	-8068	-8069	0.611	0.534	0.288	0.372	0.487	0.141
arCOG04067- KOD02309- COG00090	J; Ribosomal protein L2	-9148	-9153	-9147	0.592	0.392	0.584	0.304	0.284	0.412
arCOG04070- KOD00746- COG00087	J; Ribosomal protein L3	-13471	-13475	-13476	0.696	0.428	0.246	0.647	0.236	0.116
arCOG04071- KOD01475- COG00088	J; Ribosomal protein L4	-11194	-11194	-11198	0.572	0.581	0.246	0.449	0.437	0.114
arCOG04072- KOD01751- COG00089	J; Ribosomal protein L23	-3474	-3471	-3474	0.304	0.794	0.280	0.209	0.652	0.139
arCOG04086- KOD03184- COG01841	J; Ribosomal protein L30/L7E	-5159	-5158	-5159	0.349	0.743	0.339	0.247	0.506	0.247
KOD00877- COG00098	J; Ribosomal protein S5	-6732	-6730	-6736	0.432	0.620	0.105	0.411	0.557	0.032

arCOG04088-										
KOD00875-	J; Ribosomal protein L18	-6275	-6277	-6275	0.536	0.397	0.573	0.474	0.150	0.376
COG00256										
arCOG04090-										
KOD03255-	J; Ribosomal protein L6P/L9E	-7957	-7947	-7953	0.175	0.811	0.316	0.092	0.726	0.182
COG00097	-									
arCOG04091-										
KOD01754-	J; Ribosomal protein S8	-5250	-5245	-5244	0.155	0.571	0.578	0.090	0.397	0.513
COG00096										
arCOG04092-										
KOD00397-	J; Ribosomal protein L5	-6405	-6402	-6404	0.296	0.583	0.580	0.156	0.561	0.282
COG00094										
arCOG04094-										
KOD03401-	J; Ribosomal protein L24	-4126	-4126	-4125	0.521	0.469	0.591	0.389	0.288	0.323
COG00198	, 1									
arCOG04095-										
KOD00901-	J; Ribosomal protein L14	-4138	-4190	-4190	0.636	0.000	0.000	1.000	0.000	0.000
COG00093	, 1									
arCOG04096-										
KOD01728-	J: Ribosomal protein S17	-4013	-3998	-3997	0.099	0.526	0.579	0.051	0.479	0.470
COG00186	, 1									
arCOG04097-										
KOD03181-	J; Ribosomal protein S3	-8927	-8928	-8928	0.746	0.341	0.338	0.533	0.233	0.233
COG00092	, 1									
arCOG04098-										
KOD03353-	J; Ribosomal protein L22	-5818	-5818	-5818	0.493	0.662	0.374	0.472	0.314	0.214
COG00091	, 1									
arCOG04099-										
KOD00898-	J; Ribosomal protein S19	-4566	-4566	-4565	0.191	0.291	0.816	0.172	0.194	0.633
COG00185	, 1									
arCOG04113-										
KOD00857-	J; Ribosomal protein L16/L10E	-5917	-5918	-5918	0.602	0.459	0.520	0.361	0.369	0.270
COG00197	, 1									
arCOG04121-										
KOD02299-	L: Ribonuclease HII	-8051	-8051	-8053	0.573	0.490	0.089	0.493	0.424	0.083
COG00164										
arCOG04131-										
KOD00820-	J; Dimethyladenosine transferase (rRNA	-11072	-11070	-11065	0.243	0.369	0.761	0.115	0.222	0.664
COG00030	metnylation)									
arCOG04133-		12667	12605	12602	0.077	0.010	0.025	0.072	0.000	0.000
KOD04492-	E; Unorismate synthase	-1366/	-13695	-13693	0.977	0.019	0.035	0.963	0.008	0.029

COG00082

arCOG04147-	D. Summer is diamaters	7025	7259	7054	0.047	0.040	0.002	0.902	0.026	0.092	
COG00605	P; Superoxide dismutase	-7255	-7258	-7254	0.947	0.040	0.092	0.892	0.026	0.082	
arCOG04157- KOD05009-	L: Site-specific DNA methylase	-10745	-10767	-10767	0.968	0.052	0.051	0.959	0.020	0.021	
COG00270	_,										
arCOG04169- KOD01373-	U: Preprotein translocase subunit SecY	-20163	-20161	-20176	0.419	0.784	0.207	0.294	0.528	0.178	CA
COG00201	, <u>,</u>										-
arCOG04184- KOD03222-	F: Xanthosine triphosphate pyrophosphatase	-8093	-8095	-8097	0.681	0.391	0.196	0.634	0.305	0.061	
COG00127	- ,										
arCOG04185- KOD00400-	J: Ribosomal protein \$15P/\$13E	-5502	-5502	-5502	0.392	0.564	0.558	0.295	0.345	0.360	
COG00184		0002	0002	0002	0.072	0.001	0.000	0.290	010 10	0.000	
arCOG04223- KOD01770-	J; Translation initiation factor 1 (eIF-	-3962	-3965	-3965	0713	0 375	0 368	0 644	0 178	0 178	
COG00023	1/SUI1) and related proteins	3702	5705	5705	0.715	0.575	0.500	0.011	0.170	0.170	
arCOG04231- KOD03338-	P; Uncharacterized protein involved in	-4304	-4303	-4302	0 446	0 510	0.615	0 279	0 351	0 370	
COG01324	tolerance to divalent cations	1501	1505	1502	0.110	0.510	0.015	0.279	0.551	0.570	
arCOG04239-	I. Ribosomal protein S4 and related proteins	-7667	-7667	-7667	0 360	0 373	0 732	0 276	0.276	0 448	
COG00522	s, Ribbsoniai protein 54 and related proteins	/00/	/00/	/00/	0.500	0.575	0.752	0.270	0.270	0.440	
arCOG04240- KOD00407	I. Pibosomal protain \$11	3003	3002	3080	0 367	0 300	0 722	0 270	0 171	0.549	
COG00100	s, Ribbsoniai protein STT	-3773	-3772	-3707	0.507	0.377	0.722	0.277	0.171	0.547	
arCOG04241-	K; DNA-directed RNA polymerase alpha	12243	12245	12245	0.862	0.208	0 203	0.713	0 1/3	0.143	
COG00202	subunit/40 kD subunit	-12243	-12243	-12243	0.002	0.208	0.205	0.715	0.145	0.145	
arCOG04242-	L Dibocomal protain L 12	59/1	5921	5921	0.261	0 6 4 5	0 572	0 102	0.400	0.407	
COG00102	J, Kibosomai protein L15	-3641	-3634	-3654	0.201	0.045	0.372	0.195	0.400	0.407	
arCOG04243-		5124	5107	5107	0.000	0.240	0.010	0.000	0.222	0.590	
COG00103	J; Kibosomai protein 59	-3134	-3127	-3127	0.099	0.340	0.812	0.089	0.525	0.389	
arCOG04245-		72.00	7271	7071	0.721	0.202	0.054	0.540	0.010	0.1.40	
KOD00830- COG00052	J; Ribosomal protein S2	-/369	-/3/1	-/3/1	0.731	0.382	0.256	0.540	0.310	0.149	

arCOG04248-	K; NAD-dependent protein deacetylases	001 <i>5</i>	0020	0020	0.015	0 100	0 1 2 2	0.042	0.075	0.002	
KOD02683-	SIR2 family	-8015	-8020	-8020	0.915	0.122	0.133	0.842	0.075	0.083	
arCOG04254-											
KOD03291-	I: Ribosomal protein S7	-6328	-6337	-6335	0 744	0 163	0 356	0 726	0.073	0 201	
COG00049	s, Ribbsoniai protein sv	0520	0557	0555	0.711	0.105	0.550	0.720	0.075	0.201	
arCOG04255-											
KOD01749-	J: Ribosomal protein S12	-6236	-6244	-6237	0.811	0.259	0.370	0.491	0.253	0.257	А
COG00048	·, · · · · · · · · · · · · · · · · ·										
arCOG04257-											
KOD00260-	K; DNA-directed RNA polymerase beta	-35415	-35408	-35410	0.265	0.622	0.515	0.106	0.490	0.404	
COG00086	subunit/160 kD subunit										
arCOG04277-	L Translation alongstion factor D (TE										
KOD03271-	J, Translation elongation factor $F(EF-$ D)/translation initiation factor $5A$ (alf $5A$)	-5987	-5990	-5994	0.688	0.490	0.328	0.543	0.240	0.217	
COG00231	r // translation initiation factor SA (eff-SA)										
arCOG04288-											
KOD00815-	J; Ribosomal protein L10	-11790	-11792	-11792	0.621	0.479	0.436	0.568	0.216	0.216	
COG00244											
arCOG04289-											
KOD01570-	J; Ribosomal protein L1	-9573	-9579	-9579	0.915	0.130	0.089	0.855	0.084	0.061	
COG00081											
arCOG04302-	J: Glutamyl- and glutaminyl-tRNA	00150		20150	0.504	0.404	0.0.00		0.400	0.000	
KOD01147-	synthetases	-20153	-20158	-20159	0.724	0.401	0.360	0.577	0.193	0.230	
COG00008	2										
arCOG04372-	L Dibergental matein I 11	(2()	(250	(2(0)	0.210	0.702	0.217	0.200	0 571	0.120	
KUD00880-	J; Ribosomai protein L11	-0302	-0338	-0300	0.318	0.793	0.217	0.299	0.571	0.150	
2rCOG00080											
KOD031/3	E; Imidazoleglycerol-phosphate	8103	8101	8107	0.468	0.603	0.120	0.437	0.510	0.043	
COG00131	dehydratase	-0105	-0101	-0107	0.400	0.005	0.12)	0.457	0.517	0.045	
arCOG04449-											
KOD02554-	I: Pseudouridylate synthase	-9362	-9360	-9365	0.452	0.606	0.065	0.418	0.544	0.039	
COG00101		200	1000	1000	01.02	0.000	0.000	01110	010 1 1	0.000	
arCOG04465-											
KOD05645-	E: Ketol-acid reductoisomerase	-11753	-11742	-11754	0.371	0.736	0.287	0.238	0.662	0.100	
COG00059	,										
arCOG05412-											
KOD00626-	G; Beta-glucosidase/6-phospho-beta-	-17714	-17964	-17964	0.235	0.000	0.000	1.000	0.000	0.000	Α
COG02723	giucosidase/deta-gaiactosidase										
1arCOG00404	I Histidul tDNA synthetase	17612	17507	17614	0.029	0.079	0.000	0.020	0.066	0.005	
-KOD01936-	J, IIISUUJI-IKINA SYIIIIEläse	-1/012	-1/39/	-1/014	0.028	0.978	0.000	0.029	0.900	0.005	

COG00124										
2arCOG00404										
-KOD01936-	J; Histidyl-tRNA synthetase	-16012	-16003	-16013	0.211	0.861	0.157	0.131	0.813	0.056
COG00124										
1arCOG01886										
-KOD02144-	J; Tyrosyl-tRNA synthetase	-13963	-13967	-13959	0.368	0.271	0.780	0.194	0.176	0.630
COG00162										
2arCOG01886										
-KOD02144-	J; Tyrosyl-tRNA synthetase	-14510	-14497	-14510	0.117	0.925	0.099	0.055	0.913	0.033
COG00162										
Total		-1668665	-1668865	-1669217						

^a- Log-likelihood, reported by TreeFinder for the three competing constrained topologies: C, "classical"; CA, "crenarchaeal" and EA, "euryarchaeal".

^b- AU test *p*-values, reported by TreeFinder for the three competing constrained topologies.

^c- ELW values, reported by TreeFinder for the three competing constrained topologies.

^d- Synapomorphies found in the alignments.

Ta	ble	S2.	The	67	analyzed	eukaryotic	genomes
----	-----	-----	-----	----	----------	------------	---------

Species1axonSourceCryptosporidium parvumAlveolata, ApicomplexaGBPlasmodium bergheiAlveolata, ApicomplexaGBPlasmodium chabaudiAlveolata, ApicomplexaGBPlasmodium falciparumAlveolata, ApicomplexaGBPlasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaEntamoeba histolyticaEntamoebaEntamoeba histolyticaEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhaeodactylum tricornutumstramenopiles, OomycetesJGIPhytophthora ramorumstramenopiles, OomycetesJGICrypanosona reinhardtiiViridiplantae, ChlorophytaJGIOstrecoccus lucimarinusViridiplantae, ChlorophytaJGI	0 :	T	0
Cryptosporidium parvumAlveolata, ApicomplexaGBPlasmodium bergheiAlveolata, ApicomplexaGBPlasmodium chabaudiAlveolata, ApicomplexaGBPlasmodium falciparumAlveolata, ApicomplexaGBPlasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaEntamoeba histolyticaEntamoebaEntamoeba histolyticaEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, Bangiophyceaeof TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGICynidionas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Species	laxon	Source
Plasmodium bergheiAlveolata, ApicomplexaGBPlasmodium chabaudiAlveolata, ApicomplexaGBPlasmodium falciparumAlveolata, ApicomplexaGBPlasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaEntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaGBTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora ramorumViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Cryptosporidium parvum	Alveolata, Apicomplexa	GB
Plasmodium chabaudiAlveolata, ApicomplexaGBPlasmodium falciparumAlveolata, ApicomplexaGBPlasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaTIGREntamoeba histolyticaEntamoebiae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaGBTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Plasmodium berghei	Alveolata, Apicomplexa	GB
Plasmodium falciparumAlveolata, ApicomplexaGBPlasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaTIGRLeishmania majorEuglenozoa, KinetoplastidaGBTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Plasmodium chabaudi	Alveolata, Apicomplexa	GB
Plasmodium yoelii yoeliiAlveolata, ApicomplexaGBTheileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaTIGREntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaGBTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Plasmodium falciparum	Alveolata, Apicomplexa	GB
Theileria annulataAlveolata, ApicomplexaGBTheileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaTIGREntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaGBTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Plasmodium yoelii yoelii	Alveolata, Apicomplexa	GB
Theileria parvaAlveolata, ApicomplexaGBTetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaTIGREntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Theileria annulata	Alveolata, Apicomplexa	GB
Tetrahymena thermophilaAlveolata, CiliophoraGBGiardia lambliaDiplomonadida group,GBDiplomonadidaDiplomonadidaGBEntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Theileria parva	Alveolata, Apicomplexa	GB
Giardia lambliaDiplomonadida group, DiplomonadidaGBEntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBTrypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Tetrahymena thermophila	Alveolata, Ciliophora	GB
DiplomonadidaEntamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBTrypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Giardia lamblia	Diplomonadida group,	GB
Entamoeba histolyticaEntamoebidae, EntamoebaTIGRLeishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBTrypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, OomycetesJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI		Diplomonadida	
Leishmania majorEuglenozoa, KinetoplastidaTIGRTrypanosoma bruceiEuglenozoa, KinetoplastidaGBTrypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, OomycetesJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Entamoeba histolytica	Entamoebidae, Entamoeba	TIGR
Trypanosoma bruceiEuglenozoa, KinetoplastidaGBTrypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, OomycetesJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Leishmania major	Euglenozoa, Kinetoplastida	TIGR
Trypanosoma cruziEuglenozoa, KinetoplastidaGBDictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Trypanosoma brucei	Euglenozoa, Kinetoplastida	GB
Dictyostelium discoideumMycetozoa, DictyosteliidaGBCyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Trypanosoma cruzi	Euglenozoa, Kinetoplastida	GB
Cyanidioschyzon merolaeRhodophyta, BangiophyceaeUniversity of TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Dictyostelium discoideum	Mycetozoa, Dictyosteliida	GB
Phaeodactylum tricornutumstramenopiles, Bacillariophytaof TokyoPhaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Cyanidioschyzon merolae	Rhodophyta, Bangiophyceae	University
Phaeodactylum tricornutumstramenopiles, BacillariophytaJGIThalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI			of Tokyo
Thalassiosira pseudonanastramenopiles, BacillariophytaJGIPhytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Phaeodactylum tricornutum	stramenopiles, Bacillariophyta	JGI
Phytophthora ramorumstramenopiles, OomycetesJGIPhytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Thalassiosira pseudonana	stramenopiles, Bacillariophyta	JGI
Phytophthora sojaestramenopiles, OomycetesJGIChlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Phytophthora ramorum	stramenopiles, Oomycetes	JGI
Chlamydomonas reinhardtiiViridiplantae, ChlorophytaJGIOstreococcus lucimarinusViridiplantae, ChlorophytaJGI	Phytophthora sojae	stramenopiles, Oomycetes	JGI
Ostreococcus lucimarinus Viridiplantae. Chlorophyta JGI	Chlamydomonas reinhardtii	Viridiplantae, Chlorophyta	JGI
	Ostreococcus lucimarinus	Viridiplantae, Chlorophyta	JGI
Ostreococcus tauri Viridiplantae, Chlorophyta EMBL	Ostreococcus tauri	Viridiplantae, Chlorophyta	EMBL
Arabidopsis thaliana Viridiplantae. Streptophyta GB	Arabidopsis thaliana	Viridiplantae, Streptophyta	GB
Orvza sativa (japonica) Viridiplantae. Streptophyta GB	Orvza sativa (japonica)	Viridiplantae. Streptophyta	GB
Populus trichocarpa Viridiplantae. Streptophyta JGI	Populus trichocarpa	Viridiplantae, Streptophyta	JGI
Aspergillus fumigatus Fungi, Ascomycota GB	Aspergillus fumigatus	Fungi. Ascomvcota	GB
Aspergillus oryzae Fungi, Ascomycota GB	Aspergillus orvzae	Fungi. Ascomvcota	GB
Candida albicans Fungi, Ascomycota GB	Candida albicans	Fungi. Ascomvcota	GB
Candida glabrata Fungi, Ascomycota GB	Candida glabrata	Fungi, Ascomycota	GB
Debaryomyces hansenii Fungi, Ascomycota GB	Debarvomyces hansenii	Fungi, Ascomycota	GB
Aspergillus nidulans Fungi, Ascomycota GB	Aspergillus nidulans	Fungi, Ascomycota	GB
Eremothecium gossynii Fungi, Ascomycota GR	Eremothecium gossynii	Fungi, Ascomycota	GB
Gibberella zeae Fungi Ascomycota GR	Gibberella zeae	Fungi Ascomycota	GB
Trichoderma reesei Fungi Ascomycota IGI	Trichoderma reesei	Fungi Ascomycota	JGI
Kluvveromyces lactis Fungi Ascomycota GR	Kluvveromyces lactis	Fungi Ascomycota	GB
Kluvveromyces waltii Fungi, Ascomycota MIT	Kluvveromyces waltii	Fungi, Ascomycota	MIT

Magnaporthe grisea	Fungi, Ascomycota	GB
Neurospora crassa	Fungi, Ascomycota	GB
Saccharomyces cerevisiae	Fungi, Ascomycota	GB
Schizosaccharomyces pombe	Fungi, Ascomycota	GB
Yarrowia lipolytica	Fungi, Ascomycota	GB
Cryptococcus neoformans	Fungi, Basidiomycota	GB
Laccaria bicolor	Fungi, Basidiomycota	JGI
Phanerochaete chrysosporium	Fungi, Basidiomycota	JGI
Ustilago maydis	Fungi, Basidiomycota	GB
Encephalitozoon cuniculi	Fungi, Microsporidia	GB
Anopheles gambiae	Metazoa, Arthropoda	GB
Apis mellifera	Metazoa, Arthropoda	EMBL
Drosophila melanogaster	Metazoa, Arthropoda	GB
Bos taurus	Metazoa, Chordata	Ensembl
Canis lupus familiaris	Metazoa, Chordata	GB
Ciona intestinalis	Metazoa, Chordata	JGI
Danio rerio	Metazoa, Chordata	GB
Gallus gallus	Metazoa, Chordata	EMBL
Monodelphis domestica	Metazoa, Chordata	Ensemb
Homo sapiens	Metazoa, Chordata	GB
Macaca mulatta	Metazoa, Chordata	Ensembl
Mus musculus	Metazoa, Chordata	GB
Pan troglodytes	Metazoa, Chordata	EMBL
Rattus norvegicus	Metazoa, Chordata	Ensembl
Takifugu rubripes	Metazoa, Chordata	EMBL
Tetraodon nigroviridis	Metazoa, Chordata	GB
Nematostella vectensis	Metazoa, Cnidaria	JGI
Strongylocentrotus purpuratus	Metazoa, Echinodermata	GB
Caenorhabditis briggsae	Metazoa, Nematoda	GB
Caenorhabditis elegans	Metazoa, Nematoda	GB
Monosiga brevicollis	Choanoflagellida, Codonosigidae	JGI

Fig. S1

ar	COG00402	1
B3 Sheon1	:	SYROFINEYOLOTKFRODYRPRFGVYRSROF-LMKDAYSFHLDMDTLNETYEAMYQAYSNILSR-JGHAFRPVLADTGSIGGSMSHEBHVLAQSGEDLIAYST SDHAANIEKA
B10 Chlcal	:	GRKOND HLYQIATKIRDDI PRFGIMRARDF-IMEDSYNFSDSPEQMNEQYAKIRQAYQNI DR-IEIKYNIVEADGGKIGKGKSEEBHVLCSIGEDTICVSGA GANIEAA
B9 Trepal	:	SYKHFPISIYQINAKYRDDI PRYGL <mark>YR</mark> ARDF-TMADAY <mark>S</mark> FHTDCACLARTYEKFAHAYRAI RR-IG <mark>H</mark> SVIAVHAHLGAMGGQESEERWESAVGDNTLLLCPHCTYAANCEKA
B2 Biflo1	:	SYKDEPYT YQIQTKYRDDFFPRAGLIRGRDF-VMKDAYSFTIDEEGMRKAYYDERGAMERIGQR-DDKYVPVFAMSGPMGGSASEELAPMPIGEDTFALAPSGK-AWNVEAL
B6 Lacpl1	:	SYKREDITEYOIQAKYRDDDFPRYGLERGROF-IMKDAYSFHADEASLDDTFQDMAQAYQNIBER-VGEKFRSIIGDGGAMGGKDSREYSAIAPVGEDTIVYSDASDYAANLEMA
B3 Wolsul	:	SYKOLPIHLYOIHLKFRDDI-PRFGLMRGRDF-VMKDGYSFHANEADLIREFELMEATYKRITTR-LGDDFRVVEADSGAIGGSGSKEMVLAQSGEDTIAVCDSCEVAANIEAA
B4 Synsp2	:	SYROLEVNLYOVOTKFRDELEPFFGDMRGREF-IMKDAYSFHADEADLOATYAVMDOATRRIGER-CGLEAWPVDADSGAIGGAASOEMVTAEAGEDLILISDDGAMAANOEKA
CA Hypbul	:	SYROLEKKYYOIVSIFRYETKATRPMIRIREVTTFKEAHUVHDSFADADROVAEAIELYKKIDDE-LGPYVISRRPEWDREWDREARVUTVAFDT-
CA_Calma1	:	DHTDIRIRYYCIVSVFRAETAMTHPMTRIREISMFKEAHTAHADRDDAEROVKEAVGITRRIMDE-ICTPYTISRRPDWDKFAGAVTIAFDT-

RYÐT

Fig. S2	2a
---------	----

CA Sulac1

CA Pyrcal

CA Sulsol

CA Aerpel

CA_Thele1

En Enthil

Vi^{Ostlu2}

Rh Cyame 2

EA Metbul

EA Metth1

EA MetmC1

EA_Uncmel

EA Metkal

EA Metsal

Me Caebr1 : -----MSDAIVKQQSHRDL

Da_Phatr2 : QDLLSQFSHVHSHPLKSHRDL

Ap_Playo1 : DEDIKNMDEVIIHPMRSHRDL

EA Arcful : NAFYAEKRALIGIKLENHAD

Mi Enccul : -----

arCOG00415 - EA synapomorphy

QSYKQ

-ODYKDI

KSYKQL

KSYROL

KDHTD

-RSHRD

SGHRDI

RSHRDL

RSHRD

RSHADI

RSHTDL

KVHTD

RSHAD

RSHADLE

RSHADI

KKYY

							•					
B11_Deira1	:	DVQVVSTGSLSL	DLALGVG	GIPRGRITE	YGPESGGKT	FLALAI VAQAÇ	KAGGTCA	FIDAE	HALDPVYAR	AL	DE <mark>I</mark> LWSÇ	PDNGEQALE
B6_Mycgal	:	DLEAISTGSIKL	DHALGTE)GFIKGRIVEJ	Y <mark>G</mark> NESC <mark>GKT</mark>	FLALSTIKQAI	DRNMRVA	FIDAÐ	HALDLRYVK	RL	GIDLTK <mark>L</mark> IIAR	PDYGEQGFE
B6_Mycgel	:	EIETISTGSLNL	DEALGSC	;GLPLGRIVEJ	Y <mark>G</mark> NESSGKT	FIALNAVASFÇ	KAGKTAC	Y IDAE	GALDLAYAK	s <mark>I</mark>	GIDLNK <mark>L</mark> LIAH	IPRHGENAFA
B6_Urepa1	:	KINAISTGSIHI	DQITGIN	IGIPVGKITE J	Y <mark>G</mark> NESSGKT	FIALQTIAECÇ	KTGGTVV	LLDLE	GSFDINYAK	SL	KVDLTK <mark>D</mark> IITÇ	PQTGEQAFD
B6 Mycpel	:	QVIKSGSILL	ONAIGVG	GYPKGKIIEJ	Y <mark>g</mark> nessgrt	FIALQCVKECI	KEGGSVA	Y IDAE	CSIDSKYLS	HI	GIDPTKLLVAT	PEYGEQAFS
B6 Laclal	:	KVSVVSSGSLAL	DIALGAC	GYPKGRIVEJ	YGPESSGKT	TVALHAVAAVÇ	KEGGIAA	FIDAE	NALDPEYAK	AL	GVNIDE <mark>B</mark> LLSQ	PDYGEQGLQ
B9 Borbul	:	GIKSMSSGSIVL	DEALGIC	GYPRGRIIEJ	FGPESSGKT	FLTLQAIAEVÇ	KEGGIAA	FIDAE	HALDPVYAK	AL	G∨NVAE <mark>I</mark> WLSQ	PDTGEQALE
CA Pyrca2	:	QRRVFKTGVSEF	DEKTPWF	GIREAFIYEF	'AGEFGAGKSI	1 AHQLSVAAI	AQGFTTRVV	YIDTE	GTFNDGLWE	AVA-KR	FDKALEA <mark>I</mark> VVYQ	PANVVQLEQ
CA_Thete1	:	QYRVVKTGVAEF	DEKTPWF	RGLREGFIYEF	'AGEFGAGKS'	FLAHQIAVKSV	AEGFGDVV	YIDTE	GTFSPQLVE	R <mark>I</mark> A-SR	FVLDK <mark>I</mark> YVYM	IPDNVSFLEA
CA_Thepe3	:	QRESLTTGVKAL	DELLE-C	GLVTQEIYE F	AGEYGSGKT	QLCHQLSVTAÇ	LPPSRGGLGGKVV	YVDTE	GTFSPSRIE	R <mark>I</mark> A-ER	FALEG <mark>W</mark> YVAR	PISVDELEE
CA_Pyris1	:	QVKTFKTGLVEF	DEKTPWF	<pre>{GIREGFIYEF</pre>	AGEYGTGKSI	MFAHQLAVVGI	KEGFTARVV	Y IDTE	GTFNPTLVE	T <mark>I</mark> A-RR	FGVEIERLDTS <mark>L</mark> VLYQ	PANVMQLEQ
CA Pyrae2	:	QVKAFK TG VAEF	DEKTPWF	RGIREAFIYEF	ACEFGAGKS	1 AHQASVAAL	REGFTERVV	YIDTE	GTFNEALIE	A <mark>VA</mark> -RR	FELDVERIADS <mark>I</mark> YVYQ	PANVVQLEQ
CA Pyrcal	:	QRRAFKTGVSEF	DEKTPWF	RGIREAFIYEF	ACEFGAGKS	¶∐AHQLSVAAI	AQGFTTRVV	YIDTE	GTFNDGLVE.	a <mark>va</mark> -kr	FDKALEA <mark>I</mark> VVYÇ	PANVVQLEQ
00_Phyral	:	NKIFITTGSRQL	DQILG-G	GLETMSVTEV	HGEFRTGKT	2 LCHTLCVTAÇ	LPRSRGGGAGKIA	FIDTE	GTFRPNRVA	E <mark>I</mark> ARER	YDDVLDN <mark>I</mark> IVAR	AHSHDAQMD
Ap Crypal	:	NILRITTGSEQF	OKMLM-G	GFESMCITE	FCENRCGKT	QICHTLCVAAÇ	LPLEMNGGNGKVC	FIDTE	GTFRPERIV	K <mark>I</mark> A-ER	FGVQGDVALDN <mark>u</mark> MYAR	AYTHEHLNQ
Vi Poptr1	:	SVIRITTGSQAL	DELLG-G	GIETSAITE	FCEFRSGKT	LAHTLCVSTC	LPTQMHGGNGKVA	YIDTE	GTFRPDRIV	P IA -ER	FGMDPGAVLDN <mark>I</mark> IYAR	AYTYEHQYN
Fu Schpo2	:	KVWSISTGSEAL	NGILG-C	GIQSMSITE	/F <mark>C</mark> EFRCGKT	2 ^{MSHTLCVTA} Ç	LPRDMGGAEGKVA	FIDTE	GTFRPDRIK	A <mark>IA</mark> -ER	FDQAMEN <mark>I</mark> IVSP	AYNSEQQME
Ci Tetth1	:	QIRRISTGSKAL	ODILN-G	GIESQSITEF	YCEYRSGKT	2 AHTACVLAÇ	-SQDHCQSPGKVL	YIDTE	GTFRPERIC	Q <mark>I</mark> A-SH	YGMEGEYALSN H IYGB	AYNVDQQNT
En Enthil	:	NVIKITTGSSQF	QLLG-C	GIETMSVTEN	IF <mark>C</mark> EFRTGK T	DICHTLAVTT Q	LPSHLKGGNGKVA	YIDTE	GTFRPERIA	Q <mark>IA-</mark> ER	FGVDQTAVLDN <mark>I</mark> LIAR	AYTHEQQFD
EA_Metsal	:	LVGKTTTGSRNF	OELLG-G	GMETQATVET	YCEFGSGKT	QVAHQLAVNVQ	LPPELGGLNGSAT	T TDT R	NTERPERTS	Q <mark>M</mark> V-MG	IEDFI.KN <mark>T</mark> HVAR	AYNSNHQTL
EA_Thekol	:	SVEVVDYNDWVY	LVIP	·ETHNFIAF	NG-LVLHNT	Q LAHTLAVMV Q	KPPEEGG LGG SVI	WIDTE	NTFRPERIK	Q <mark>I</mark> A-EN	RGIDPEETLKN <mark>I</mark> YVAR	AFNSNHQML
EA_Metst1	:	DVGRITTGSKGL	DELIG-G	GIETQSITE	YY <mark>GEF</mark> GSGKS	QISHELSVTTÇ	LPVEEGGLDGEVV	FIDTE	NTFRPERIE	Q <mark>I</mark> A-EG	FGLNIEEVLKK <mark>I</mark> HVAR	AFNSSHQIL
EA_Pictol	:	EIKKLTTGSSNL	ONLLG-C	;GLETQSITEF	FGEFGSGKT	QIMHQLAVNAT	MPVEKNGFDSDVL	IDTE	NIFRPERII	QMA-RA	KDLDPDQTLER <mark>H</mark> WAR	AYNSHHQIL
EA_Metla1	:	DVLKIKILVPEI	DELFG-C	;GLETQAITEJ	YGEFGSGKS	QIAHQLAVNCÇ	LPQELGGLGGSCL	YIDTE	NIFRPERIE	Q <mark>MA</mark> -EG	LELADLPEGYVVPTPDEFLAN <mark>H</mark> WAR	AHSSDHQML
EA_Halwal	:	EIGKLSWKIPEV	DELLG-G	GIETQSITE:	YY <mark>G</mark> EFGAGKS	QVTHQMAVNVÇ	LPPEHGGLGGAAI	FVDSE	DTFRPERID	DML-RG	LDDEIITDLLERREIEGTPGDDETMKALLDSFLDH <mark>I</mark> HVAK	GAFNSNHQIL
EA Pvrabl	:	SIGRISTESKSL	KLLG-C	GIETOAITEN	FREEGSGK	DIAHTLAVMVC	LPPEEGGLNGSVI	NTOTE	NTERPERIR	E TA -KN	RDEVLKH U Y WAR	AFNSNHOML

 $\mathbf{\Gamma}$

"ATRPMIRLREVSTFKEAHTLHETYEDAERQVKEAIEIYKNF"EE-"MTHPMIRLREISMFKEAHTVHVDREDAERQVREAVEIYKRI"DE-

ATRPMIRLE ITTFKEAHT VHETYDDAQKQVEEAIEIYKKI DI

CAITTIAFDT-CAVITIAFDT-

ALHTYAFDT-

GALYTIAFDT-

-AVITIAFDT-

GDETTTVEA-

GFRTTTVEA-

GADYTTSIEA-ANETSTNET-

GAYYSLTVEC-

GDYTTTVEA-

GSETTVAFDT-

GADYTMAFDT-

GADYTMAFDT-

GAANTIAFDT-

GAEYTVAFDT-

GADYSIALDV-

ACGLYTTTVEA-PCADYTIAVDS-

-WDI

-WDF

-WDI

--WDF

-WD

-KEI

-KEF

-NEI

-GEF

-GET

-KER

-REF

-WDI

-WDF

-WDF

--WDF

--WDK

-WDK

-WDK

TAYNTNRRPD-

PT PY

IMSQRPE-

LSERPE

Fig. S2b

arCOG01924

P2 Corof1	• NVINDITU-DODU	S S S T TT	CORMETEN	срт			AFACC		TUTTODOD		CVVTCC7	CEUDED	
B2_COLETI B6_Ligip1	· AVELDIAN-TDARD		CC DADEEDCT	NOD II		CEMMIROZOVI	NENED	TEADDVVR	NUMBENTOC	CARCECV	CITD	OFINIA	VOVDIFUECEDIDID
B3_Vibpa2	AVEIDLEV_KCDED	NUT V	AMDDCTAMCA	CDV	$\mathbf{V} = \mathbf{V} \mathbf{V}$	TOFOSKCPCVL	AMNDT	TEDARDVE	MTMTTever	OSDMFCD	CVTUNSE	NEAUDGOLDEL	GULLERED POLICE CINER.
RE Staaul	• ARL DLLL-GLEOP	N T T	DAMESSNETCS	GLY	NYISALRV	SDERVERREAM	V 8'NL) 8'	TEDARDVT	MTHTSNTNT	OSPNHGEL	GVLTKDE	WORHHWB	YROOALENVNIJKL
B3 Agrtul	 SLLWHLOH-ALPKPR 		CAOFTADHROAD	GPA		A LDORNAEKGVL	SFGGB	CLEAWGLY	NISADAADA	RS			ADADKI.AADVT
BJ_AGECUI B11 Deiral	· AFFUHLCL-PAGLE	NULT	SMRHAEEVSW	GPG		ALCPOTAGRGPL	VEGGD	FDARTVT	NUTSAVDA	GGYP-GP	GRIDRTAAG	POVHYFA	RDEDEDTERDVTL
B3 Brume2	· AFLIDLLW-EHPOPI		CAMESPRAPGA	GPA	V = U = V	AASBLSBERGVL	AMNDT	THAABWIT	SHALSVOT	VSSDSGPI	GYVYEET	PVYTNTL	SRLPKIDRTOFNA
CA Calmal	· ADDIDE DIG SHI QH	NV L.V	BARSSDRPSS	SEE	$V \nabla \Delta T = -LV$	ADREDIENCI	AMHDNTSDGVVA	WHRGVEVE	MHTSBBDA	TSVNHEP	AKVLTKEGK	TMNTSD	YKGRGBLECSTRE
CA_Caimai	· NAANAFAVOFADCE	U T V T V	A DSCHUDS	алт.	WTCZT-VV	VUADEAESV	AMUCSVNDDTTL	VHRGVRAR	MUTSPDA	MSTNCKD	ARVDDLRCS	TRICTCT	V-KCRCDDV/V////SF
CA_stamal	 MAAMAFATKNKPVP 	WEV	A RSSDRPST	SAR	NIKAPELV	AAKAPFARSV	VMHGETSDTYAL	AHBGVKVB	MHTSBBDA	OSTNDYPI	ATTYPDKNE	WKTINKIIEF	BDKDKDDILENKE
Ca Pyrcal	· ADDIDEDEREDOCH	ΔLV	A RSSDRPST	AVL	NIKAAVAV	ADDITADSV	WWHKTSSDSVIA	AHRGTRVR	MHTSBBDA	OSTNAOPI	AEYYPEKDI	UOVLEPO	YKERGGLSYTTKE
CA Thetel	 SAAWAFAFKETPGP 	T F V	S RSSDRPSS			ALCOTADE A	AMHASTNDGTVY	HEGTEVE	MHTSBRDT	RSIGITRI	AEVDVESKS	UKVLBED	YKRRGTLSYTDKF
CA Hyphul	· ASALAFAFRGLDVD		A RSSDRPSS	A S FI	NUTSAVLV	AARAPFARVT	WHEFTEDTYAL	AHRATKVR	MHTSBBDA	OSTNARDI	ABVYPEER	TELVSEPLO	
Ca Pyris1	· ADDIDEDEKSDOGD	ALV	A RSSDRPST	AVL	NIKARMAV	AUGUIADI ATRAPFARSV	WMHKASSDSIIA	WHRGTRVR	MHTSBBDA	OSTNARD.	AEYYVEKDI	UOTLAEE	
Da Thansl	• ATALSEMLENLGER	N FT	S VPIAOPHS	ARHI		A LEDVPICEVT	FFHDB	TRACESS	NUTGALLA	NSPNTPPI	ATVGTS	DENSHLTL	PPARGVLEVHTKM
Vi_Osttal	: ASAUSIMLEGEGKE	INLT	GSOLPLAYPRS	DARO	NI LDA LTCIV	GSKSCGGVVDFYEVA	CFNGK	LEGNEAO	KTSATVYAA	SSPSYPA	ABLG	VGVDWNHARL	LPROEOYTPREDV
Fu Crvnel	ATTSFLEKDAGKP	TTVT	GAOTPLSEPES	GWT	NILDSLFV	GVLPYAGVG	VFNHO	VMHGTBAT	KTSPNLFAA	TIPCTPPI	TNLNVF	TLDSTLSLA	PRSITPPAPLIALNA
Fu_Ustmal	SALSMLLENLGKS	V I VT	GAOVPLSELRN	ATE	VULGALML	AGSYTTPEVG	YFAST	YEGNETS	VSNNALAA		ARVGTN	EVAWNLVER	SRTVKGFRAHDKM
Dp Giala2	SALSELLPNLSKP	UT LT	GSOTPLAETYN	GVE	NILGSTLL	AGWYDIPEVG	FFAGK	I YRGNRAO	KYSSWOLNA	DSGAYPPI	ATMGVS	FVNTEKTER	ADSDOKPTVODAV
En Enthi2	SST SEMEENLNKT	IVVT	GAOTPLCOPYS	ATN	NILSALTT	AGDIPIPEVV	TFGGH	LYBGNBVO	LKANSYEG	DSANYPA	AMEGAF	LVDWPHVNP	YANEPMRFIPTV
Me Nemve3	SAT SEMEENLSKE	TFT	GSOLPIGDLET	AKE	NUTTATOT	ASLOEKGEATIOEVG	YFEYK	LYRGNETT	NTSAEHENA	SSPNFPE	AESGVE	I KVNKDVLLK	KVAGKTLKINKNF
EA Metmal	AAAISEMI-ETPVP	VEV	SORSADRESS	NAM	NATCAARV	AISDIAEVV	VMHGTSSDDYCE	THEGTEVE	MHTSERDA	KSVNSLP	GTVDYDTGE	KTFIEYT	GRGEKSLKFKPGM
EA Thevol	: SSALAFMFERLAOP	IFV	SORSSDRPSS	TKE	MEGAINF	AATDLGEVG	AMHKGISDGSIV	HRAVRSR	MHTSRRDA	ESIDTVH	AEYTSS	WRFFSDY	RKAEEENLLLDHL
NA Nanegl	: SAYAYYAL-ENPIP	AFT	CAORSSDRAST	AVI	N FASSIY	ANSNIGEVA	VMHETINDDTAL	AIRGISAR	MHSTRRDA	KSINEEP	ARIYYPSGF	EIINKK	YRKRSDKEMVAKPYL
EA MetmC1	: ASAISEMV-TSEVE	ILV	CAORSSDRPSS	AALI	NIIAAVKA	∆TEPIKGVY	VLMHGETGDTVCH	HEGTKVR	LHSSRRDA	KSVNETP	AEINPFIKF	WTYLRDVKSOI	D-KSKIKEVVLNTDL
EA Metst1	: ASAISFMI-DSPVP	IVLT	GAORSSDRPSS	AFT	MIMASVNA	AKSDIAEVT	CMHGTEDDSYCD	HRGTRAR	MHTSRRDT	TSINMNP	ARIENNF	TINDTO-VK	YTKRNEKELS LNTNL
EA Pictol	: ASALAFMFEKLSAP	VIFV	CSORSPDRPSS	AFI	NIGAAANF	SLMDLGEVS	AMHSYTSD-IVG	ISRAVRTR	MHTSRRDA	KPIDDDY	AFFDGF	IKINENY	KKRDDETILMDKL
EA Arcful	: AAALSFML-STPKP	VVFV	GAORSSDRPSS	DAAM	NILCAAKA	ATEDIGEVV	VCMHGSTSDDYCL	VHRGVKVR	NHTSRRDA	OSVNAKP	GRIDYPS	LSVEWLSW-R	Y-RRGERELKLTDRL
_													

Fig. S2c

arCOG04169 - CA synapomorphy

 $\mathbf{1}$

B6 Strmul	:LVKTPNVOTFLLIGAILTAGSVVVTWLGDOISD-KGF	CNEVSMIIFAGIISSIPGTIKSVYEDYFVNIRSSEMKNSIFVGL	LILASLIII
B6 Mycpel	: OSALSSVPAGOIILLLIGMTAGTYLTIFISDIISK-RGV	GNGVTLIILSGIVASIYPNFTSVFQVLTGSSQISNQLLRYFS	FAVYLVFFFLIL
B3 Desvul	: APVVLEAGWAFRLVTIITLTAGTVLINWLGEOITE-KGL	CNGISLIIFSGIVAGIPGGI	IVILALMGLVL
B6 Mycpul	: IDOEFKTIANIYVLIPLILVAGSLFTLFLSEOITD-KGI	GNGTSLIIFSGISLSLPSOFRAAFNVLVGTNKTTLFTGLIHFLLY	LFGYLLLI
B2 Mycbol	: LDIIADOSIFTLVVIVLVMTGGAALVMWMGELITE-RGI	CNGMSILIFVGIAARIPAEGOSILESRGGVVFTAVCA	AALIII
B6 Cloac1	:TNSKLSVFLIILTLTAASTFLMWLGDOITD-KGI	GNCASLIIFVNIISRFPSTIŸNIVKLOSADTVNIVEIVVV	AVIACVLF
B11 Deiral	: WDPGLFTVLVMVLTQVAGIAFTMWIGERITE-VGI	GNGISLIITAGIIAVYPREIAATAQLLRSEQTTLLSILAF	IAVILVTI
CA Āerpel	:AIEPGPLDYALVSLQLFLGALLVIYFDEVMQKGWGI	GSAISIFILAGVAQGVVWSIFGTIPGVAQDYELVPAIIS	NGFPDLTGFFTTLAAI
CA Pyrcal	:PLGGVLIVLQLLLATVIILLLDDLMSKGWGI	GSAISIIIFLGVSRQIFLSLFSWDTVQ-DSNGNTQVFGLIPALGVALY	DLFTSGNANTLLGLVNRPLTVNTYLPDFVGLVATILLG
CA Sulto1	:LSAIVTIQLIVATYIILLLDEMIQKGWGL	GSCISIFILAGVTKINFWDMFGIAAVSNQNLPVCFFPVLISD	IVSGKNILSLIVNTSTTTPFQPDLVGLISTIGLI
CA Censyl	:VLYILIGQLMASSIIIMFLDELIQKGWGL	GSGISLFIMAGVAQQILWSLFSPLPAGDGFAVGIFPFIGQW	ASVGMGNFEDIFFRYNQLPSIFGLLLTGGVL
CA_Thepe1	:QQQQIIVFVQLFVASTFVILMNDMLEKGWGI	CSAVSLFIAAGVAQQIFWELFSPIGPLGDGLYYCLFPSLFSA	LVSGNSTLLMHVVVRPSGYPDLVGFVGMVVML
CA_Calma1	:QLTVANAGLAFIVWLQMLFGAVIVILLDDLISKGWGI	CSGISLFILISIIRSIFQSTFMPVTVGAGELLCIIPALVAAVY	SAAVSHTLAPLLSIVYRFNLPGLIGLIATIVLG
CA_Hypbu1	: PPISTAVKIIVVLQLVFATLVLMWFDEMIRNGWGI	CSALSIFIVASVVKGIFWQLAGSTKVA-TPEGQPVYYGWLAHVVS	TGDLGVLRRGMPDMVGFLATIAII
Dp_Giala1	:QIGLFSAVAIIAQLTISSILVQVLDEMLENGWGI	CSGISIFTTANWCENIIWKSFSFFRIDRGNGKEFEGAWLAAVHY	MFTQPNKLKAIKLAFFRDGLTNVMNIIATLVVF
Ap_Thepa1	:DIGVFKSVLIILQLFFAGVVVILFDEMLQKGYGL	CSGISIFIATNICETILWKAFSPTTISTDKGTEFEGALISLFYC	FFTKKNKLSAFKEAFYRNHAPNVTNLLATALIF
Fu_Yarli1	: DSAVSELSLGAAVLIVAQLTAAGLVLILLGEIVDKGYSF	G SGSGLFTALSVSQNFMWQNLALLKVHQEFVG <mark>S</mark> IPALLMGLWKN	GLFNFGGSYRYVIENSFFRQNLPNLLQIYMSVAVF
Vi_Orysa3	:VLGAGNAVLVVLQLVLGGMVAIFLDELLQKGYGF	GSGISLFTAANTCEGVVTRALSPATMDRGRGAEFVCAVTAAAHL	LATRARKLSAVREAFFRG-GGGGSLPDLRGLAATCAVF
Fu_Yarli2	:DLGVGVCLLLIFQLVLAALVVILDELLQKGYGL	G SGISLFIATNICEQIFWKAFAPTTVNKGRGYEFECAIVAFVHL	LFTRKDKKRAIIEAFTRQDLPNMSQLVTTVAIF
Mi_Enccu1	:SLGTIYCLLLVVQLIFSGIIIILLDELLQKGYGL	GNGVNLFIAANVCESIIWKAFSPKVLFTGRGIEFEGSVIALFHL	LVVRKNKFAAIYEAFFRQNLPNLFSLLSTILLF
Fu_Debhal	: DSVPVTTLVLIFLQIVTMSFVTTLMVEIFDKGYCF	GSGVLCFVALQVATNLIRDVVGLELVSLPNSNKFESYGAAMNFIK-NF	RINFKSLNYNVLNSFTRSQLPNLSQFYIVLVTV
EA_Pictol	: HVVPGYGEFLAQTIIILQLFFGSYLVFLMDEVVSK-YGI	GSGISIFIAADVSEQUFIGTFNWLPSTITSPLSLSNPPAGAUPKALYLFW	MAPGSYLTNTGMEQILFAQPNPMIALLGTVLIF
EA_Metst1	:NDYVLVLIIQMVLGGILIIYMDEVVSK-WGF	GSGIGIFIAAGVSQTILVGAFNFLPAAGSTAPAGDIPNFIYS	LITGQPNFGLLIPVIATIIVF
EA_Metjal	:PLLAFLVIIQIAFGSIILIYLDEIVSK-YGI	GSGIGIFIAAGVSQTIFVGALGPEGYIWKFLNS	LIQGVPNIEYIAPIIGTIIVF
EA_Metbal	: ASSLGVGLGVITFLLLIQIFIGGALILFMDEVVSK-WGI	GSGVGLFIVAGISQQIVTGIFNWQLDSSGLPVGLIPKWIY	IAQNVGADYLLSGEGVLYMLVSGGILALLSTIVIF
EA_Metkal	:EPSILLEILIILQLALGGILVIFLDEVVSK-WGI	GSEVGLFIVAGVSSQTIIGAFNPLPSPQQPGRPAGAVWAFLYS	AMQGTPDWTLLAPVIGAIITF
EA_Halsp1	:MPGGAFGVEVLIFAQIAAGGILLLFMDEVISK-WGV	GSCHGHFHVAGVSQSHVGGLVFWEGGVGSQCLLPTWFDI	IVGNVSNMPPLLSGSGIEFLLMQAGILGLLTTLFIY
EA_Metcul	: TQFFGGNMLTVSLLIFLQVCLGGLLVVLMDEVVTK-WGV	CSCVGUFIVAGVSQGUVNGFLNWQTGTDPFPICFFPRLFAI	GTSGASFLEYFGTDLLALVTTAIF

Fig. S2d

arCOG04255

 $\mathbf{1}$

D10 O11 1					an an
BIU_Chical	KTKTPKKPNSALEKVAWVR	L-SNGQEVIATIGGEGHNLQDHS.	IVLVQGGRVKDI	PGALDCAAVKNR	IOSR
B3_R1CCO1	: KTWTPKKPNSALRKIATVR	L-SNKRTWNAYIPGEKHSVKDHDJ	RVLVRGGQVPDI	PGVKYHIVLGAYDIAGVKGRI	QGR
B2_Mycbol	: YTTTPKKPNSALRKVARVK	II-TSQVENTAYIPGEGHNLQDHSP	MULVRGGRVKDI	PGVRYKIIRGSLDTQGVKNRI	QAR
B6_Mycpul	: ATMTPKKPNSALRKYARVK	l-sngme v tayidgeghnlqdhs ^y	VVLIKGASVKDI	PGVRYSIIRGTQDAAGVNKRI	QAR
B6_Baccel	GTMTPKKPNSALRKYARVR	L-TNGIE <mark>V</mark> TAYIPGIGHNLQDHS ^y	VVLIRGGRVKDI	PGVRYHIVRGALDTAGVDKR	©GR
B9_Borbul	: MTVTPKKPNSALRKVARVR	L-SNGFE <mark>V</mark> TAYIPGIGHNLQDHS'	VVLIRGGRVKDI	PGVRYHIVRGAKDTLGVNNRI	KGR
B6_Mycgal	: GTMTP <mark>K</mark> KPNSALRKYAKVK	L-TNGME <mark>V</mark> LAYIPGEGHNLQEHS'	VVLIRGGRVKDI	PGVRYHIVRGTLDTTGVDKRI	QQR
CA_Aerpel	: VGVEARQPNSALRKCVRVQ	LVKNKKVVTAFVPRDGGILYVDEHDI	EVIIEGIGGPRGRSMGDI	PGVRYRVVMVNGVSLKALWEGKI	QKP
CA_Pyrca1	: VGVEARKPNAAVRKCVRVQ	LVKNGKV <mark>V</mark> TAFVPYDG <mark>GLNYIN</mark> EHDI	E <mark>VIIERIGGPEGKSL</mark> GDI	PGVRFKVVKVNGVSLWAIWRGK	QKP
CA_Sulso1	: VGIES <mark>RQ</mark> PNSAVRKCVRVQ	LVRNGRV <mark>W</mark> TAFVPGDCGVNFIDEHDI	E <mark>VIITGIG</mark> GTLGRSMGDI	PGVRYKVIMVNGVSLDALYKGKI	QKP
CA_Thepe1	: VGIES <mark>RQ</mark> PNSAVRKCVRVQ	LLKNGKV <mark>W</mark> TAFLPGDG <mark>ALLF</mark> VNEHDI	EVVIEGIGGPEGRAYGDI	PGVRWKVIKVNGVSLKEILRGR	QKP
CA Hypbul	: VGVEARQPNSAVRKCVRVQ	LIKNGRI <mark>W</mark> TAFVEGDGGLLVVDEHDI	E <mark>VLIECIGCPRGRSM</mark> GDI	PGVRYRVVTVNGVSLRAILEGRI	QKP
CA Sulac1	: VGIES <mark>RQ</mark> PNSAVRKAVRVQ	LVKNGRI <mark>V</mark> TAFVEGDG <mark>GVNF</mark> IDEHDI	E <mark>VVIAGIGGTLGRSMG</mark> DI	PGVRYKVVMVNGVSLDALYKGKI	QKP
CA Stamal	: VGVEARQPNSAVRKCVRVQ	LAKNGKVVTAFVPFDCGINYIDPHD	E <mark>VIIECIGCPRGRSMG</mark> DI	PGVRYKVIMVNGVSLKALYLGKI	QKP
En Enthil	LGIETKOPNSGIRKCVRVR	LLKNGKK <mark>I</mark> TAFVPRDGSLNYV <mark>NEND</mark> I	EVLISGF-GRRGHAVGDI	PGVRFKVVCVAGVSLWGLWTNKI	©KP
Ki Leimal	IGVGAKOPNSAIRKCVRVO	LIKNDKK I IAFVPNDGCLHFIEDND	EVLVSGF-GRSGHAVGDI	PGVRFKIVKVSNVGLYALYRQKI	EKP
Mi Enccul	IGVEAKOPNSAIRKAVRCO	LIATGKKITAFVPYDGSVTYIESNDI	EVTVEGF-GKKGRSVGDI	PGIRFKVCKVQNVSLHAIFTGK	EKP
Dp Gialal	IGISAKOPNSAVRKAVRVO	LTKNSKK <mark>I</mark> TAFVPRDGSITYIDNNDI	EVIVAGF-GRAGRAVGDI	PGCRFKVIKVAGIGLLALFLRKI	CKR
Ci Tetth1	IGIESKOPNSAVRKCVRVL	LRKNSKKIAAFVEMDCCLNFLADNDI	EVLVAGL-GRQGHAVGDI	PGVRFKVVCVKGISLLALFKGK	EKR
Vi Orysal0	IGIEAKOPNSAICKCARVO	LVKNGKK <mark>I</mark> AAFVPNDGCLNFIKENGI	PWPPPGTAAPANDALPPKGPA	PSPGSATSLPSPGTAVPPIRTAALAADASLPGDI	ATPPGSPVPPSGSAASSPSFGSPTPSPGTATR
Me Ratno8	VGAEDKHPNSAVKKYVK		KVLVAFGQKGHSVGDI	LEVRFKVVKVDDVSLLTL	
EA Pictol	: VGIEAKQPNSGIRKCVKIQ	LIKNGRQ L SAFAPGDGAINYIDEHDI	EVVVEGIGGRMGRSKGDI	PGVRYKVIKVNGISLHELVKGR	B KT
EA Uncmel	VGVEAKOPNSAIRKCIRIO	LIKNGROITAFCPGDGAINFIDEHD	EVTIECIGGRMGGSYGDI	PGVRFRVFKVNDVSLEEMVAGK	DKP
EA Metcul	VGVEAROPNSAIRKCVRVO	LIKNGROWTAFAVGDGAINFIDEHD	EVEIECIGCRLGRSKGDI	PGVRFVVTKVNNVSLREMVTGRI	IFKP
EA Metst1	: VGIEAKÕPNSAIRKCVRVÕ	LIKNGKÕITAFAFGDGAIGFIDEHDI	EVMIEGIGGPSGRSMGDI	PGVRWKVTKVNNVALSEMVSGK	EKP
EA Halmal	: VGIEAKÕPNSAIRKCVRVÕ	LIKNGKQVTAFCPGDGAISFIDEHD	EVTIAGIGGAKGRAMGDI	SGVNYKVEKVNGVSLIELVRGNA	<u> E</u> KP
EA Metacl	VGVEAKOPNSAIRKCVRVO	LIKNGROWTAFCPGDGAVNFIDEHD	EVTVEKIGGRMGGAMGDI	PGVRFKVIAVNNVSLNOLVIGR	IFKP
EA_Metsal	vgv eakqpn sair k cvriq	LIKNGRQ <mark>V</mark> TAFCPGDGAIGFIDEHD	EVVVERIGGRMGRSMGDI	PGVRFKVVAVNNVSLEEMVSGRI	12KP
	· · · · · · · · · · · · · · · · · · ·				

Fig. S2e

arCOG05412

B6_Strpn2	:	-DI-DGDA	NVLAVHY	7 YHRVFÇ	SCLKHNVI	IPFVSL	HHEDS	QKNI	ETG	DW LN-	RENIDR	FIRY/	RFCFQEF	TE-VKH	ŴFTIN	LMS LAAGQ	YIGGQFP	NHHF
B6 Mycpel	:	-DG-NGAI	NKKG I QI	HYHDVIC	ELLKHGIE	EPVITM	YHFDL	LALE	GQQG	GWTNI	RDLIVPA	FVKY/	KVLFKEY	GHKVKY	WLTIN	QNMVAMVGDI	LGMVSSD	KNRW
B6 Lacpl10	:	-DFETASL	NADGVAI	FYNHVIC	SMLAHHIT	ΓΡΥΙΝΙ	HHFDL	VALY	/DКҮН	GWES-	- KHVVEL	EVKE.	EQCFKLF	GDRVDH	WYTFN	PKVVVDGQ	YLYGWHY	QVIN
B6 Lisin6	:	-NR-QGDI	NLKGIEI	FYQNLLE	TCKKYDI	SPFVTL	YHWDL	QYWE	ETG	GWLD-	-HDVCAA	FEHY:	KVCYDHF	GDKITN	WTIFN	PKWFVANG	YKIGNYPU	GYQD
B6 Lacla5	:	-DG-RGEV	NÇAGLKI	FYEDLIC	ETIANEIE	EPIVTI	Y <mark>h</mark> wdl	OALE	DLYG	GWES-	REI	E VN Y	EVLFNAF:	KGKVKY	NVSLN	ONIFTSOG	WSLATHPU	GKRD
B6 Strpn4	:	-OG-CGKV	NTOGNDI	FYRKVFF	A KAKGIF	RLLVNL	YHEDL	FAIC	EDGD	GWEN-	-KATVSA	YEDY	RECEETY	GDLVDO	MITFN		YFYDAHY	HKVD
B6 Oceih1	:	-DYENAIV	DEEYAAS	YVDDVIF	K IONGVE	EPMICL	EHYEV	AVIÊ		GWES-	KHVVEL	EVON.	NKVFERY	GDKVKĤ	METEN	IVVOTRV	YLDAIRW	FEOS
CA Calma2	:	NESALEEIRRLA	DLNAVNE	HTRGILS	DWKERGGI	LLVINT	YH MAM	титн	IDPIAVRKNGPDRAPS	GWLD-	KRSWIE	ET KE	AFTAHEL	GDLADM	NY TMN		YVKSGEP	GYLD
CA Calma3	:	DENDLKRIDEAA	NOEAVRE	HYRETES	DIKARGTE	TTTT	YHMPI	IMVE	IDPIRVRK-GDLSGPT	GWLD-	- VKTVIN	FARE	AYTAWKE	DDLADE	Y STMN	PNVVHSNGYM	WVKSGFP	SYLN
CA_Sulac1		NESKLREMDNYA	NHEALSE	HYROTTE	DURNRGFF	TTVINM	YHNTH	титн	IDPIRVRR-GDFTGPT	GWLN-	SRTVYE	FARES	AYVAWKL	DDLASE	YATMN	PNVVWGAGYA	FPRAGEP	NYLS
CA_Sulsol	÷	NENELKBIDEYA	NKDATNE	HYBELEK	DIKSEGL	7 F T T NM	VH WPL	PLWT H	IDPTRVBB-GDFTGPS	GWLS-	TRTVYE	BARRS	AYTAWKE	DDLVDE	Y STMN	PNVVGGLGYV	GVKSGEP	GYLS
Me Cioin5	÷	-NGNTSNI	NOAGVD	YYNAMTE	STISAGVE	CPVVTT	YH WDL	OATE	CDNG	GLUN-	DVINEL	BNDY	MECEKTE	GNRVKE	NTTEN	PYVVTWLG	YGIGVEAU	GVYS
Me Caeel2	÷	-DGTLSTI	MEEGIKI	FYRDICI	LIKENNTE	CPVVTI	FHEDM		DNGT	AMLN-	-BENCEH	REKR	DICEORE	GDLVKT	NTTYN	INCOAWGS	TVKVEGER	WLCPEBPEIE
Fu Gibzel		-GGRNDPI		HYBKEVE	DILDAGTI	PPRTTT	FH WDW	DELL)BBYG	ELMN1	REFPLO	YEBY	BVMFEAT	- PRC'KN	MT THN	EWCSATLG	YSTGSNA	GRCSDRNKSDVG
Vi_Ostlu1	:	-DGSA	TDEGEE	YYONWEG	ATRERGVE	CPHVTI	FHODT	DUNCE		ZOVK-	-DET KD	FERM	DAVESEL	GKGTKY	NT TS	DKTVAEMG	YGAGLHAN	GRBS
Vi Orvsa/2	2	-NG-TGMW	MORGWDY	VYNRITE	VOVERCE	ZDVANI	VEVDU	LATH	JU JE	CWLS-	- DNTWFA	BADY:	DECEOTE	CDRVKD		BRCVAALC	VDNGFHAR	GRCSGCDAGG
00 Phyra15	:	-DTOLORNWE		FYHALLE	DIOANKLO		VEDU		10 VT01.FDK	GWLN-	- DFTWDH		FLAREF	CHKVAV	870 FM	PLTTISCC	VCSCDAAR	GRED GEDAGG
Vi Orveo31	:	-SC-BC3M	NDKCIOI	2 TERCED FYMMATN	TURNET		VUCDU		0D&DFLV 21&DFLV	CWITM		D D D D S	DVCFDFF	CDDVND	MALLIN. MUNTI	DIFISCO	VDTCTIDE	NUCSYDECNNCTCC
FA Durful	1	DESTIFUT	MEALER	T NN TN	DMKEBCKJ	CTV A	VENDE	$\Sigma^{O} \Sigma$	IDDIAVEKICODEADA	GWLD-	-FKTUDD	n l Alis DVKD	AFVAVHI.	DDLVDM	MC TIMIN	ENVVXNOGVT	MLRSGED	CVIS
EA_Fyrfu2	:	VENIETIONIA	משטראסו השטרעינוא		NERVICES	PTENT	MUOTIN		IDI IAVIGIDI DIGI A	CWND-			AF VAIIID.			DMUTUFICVI	ADVVCWD	CIIN
ER_Fylluz	:	TRENDER DODA			UERNOCNZ NUKROSE I	21 T T M T	NUQIN		IDFIAVIANT QUANAN	MCET.	TDCIVE		ATVADAD.		NATED. NGTMM	NUMITEL-NC	AFI VOWER	DCMD
EA_INEACI	1	NECCLEVIDDIA	NOZZUNI	TI VƏLLƏ VALIMAN EV	NER KNAGN I		THE ST	- V 00 1 1V	IDDIEADNCCI CNEDN	INCE I -	TREFILE	n Angs	VALVARAE.	CDUADN	NO TMA	TENT LENG	QUSNDWR	DSMA
EA_FICCUZ	1	NEGSLERIDREA	NYDA INI	AT PIETEN	N KENNMI		I I P		IDPIEARNSGESNARN	GMTM-	DDINOI	01 V <u>151 15</u>	ALLAWAR	SD VADM FDI AVA		THE VEGNGIE	NVKSGEPE	AFF5
EA_THEVOL	÷	NNNILSELDKYV	WKDALNI	HILE FN	O RNRN II	JETTNM ZVIJANJ	InnPL	VW S	DPVSVRR-GIKTERS	GMTN-	-DRI QL	BALE:	SILVIKM. BVIBVKM	SD LAVA	STMW.	JENVVYGNGFI DINVVYGNGFI	NINSGEP	2172
EA_PYTIU4	:	TKDTLEELDEIA	WKREVA.	TTRSVIN	SRSKGFF	KVIVNL	NET	тwiн	IDPIEARERALTNERN	GWVN-	PRIVIE	FAKY.	ATIATKE	GDIVDM	MSTFN.	THVVVELGYL	APISGFP	САТИ
EA_Thekol	:	TKETLHEEEIA	MAKEVEI	HIRENIK	NEKELGES	STEVTL	NUQTQ	TMUB	IDPIHVRENFEKARAK	.GWVD-	-ERALLE	BAKB:	AFVAWKL	GDTADE	MAUFD	EMALAETCAT	APYVGWP	GITN

 $\mathbf{\Gamma}$

Fig. S2f

