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Figure S1: Intensity plots of UNR demonstrating the visual effect of the estimate
of probe affinity. Plotted are the intensities with (a) the estimated non-nested
probe effect p̂k removed and (b) the estimated nested probe effect p̂k(j) removed.

Supplementary Text

S1 Algorithm: Exon Effect

As described in the main text, performing standard RMA will not estimate
nested probe affinities (i.e. specific to the exon). The estimate p̂k for probe k
(with k ranging from one to the number of probes on the chip) from the standard
RMA model will be an estimate of ej + pk(j), where j is the exon containing
probe k and k(j) indexes the probes in exon j. This means that subtracting the
probe effect, as is done in many of our plots, will erase any overall shift away
from the overall gene expression level. In Figure S1 we visually demonstrate
the difference in p̂k and p̂k(j); there we estimate p̂k(j) by using the estimate
êj = median p̂k for k in exon j.

S2 Simulation Details

Data are simulated according to the following model:

yij = log2(Bj + Iij × 2(ci+pj)) + εij , (4)
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with yij the log2(PM) for chip i and probe j, and where

log2Bj ∼ N(µBG, σ
2
BG)

ci ∼ N(µc, σ
2
c )

pj ∼ N(0, σ2
p)

εij ∼ N(0, σ2
noise).

The indicator variable Iij is as follows:

Iij =

{
1 probe j is present on chip i

0 probe j is absent on chip i.
(5)

This model features additive background, multiplicative noise, and probe–
specific affinities. Additive background (as opposed to noise) is observed in
most, if not all, microarray experiments, and can contain contributions from
multiple sources (dark current in photon detectors, scattered light from the
scanning laser, etc. (Bengtsson and Hössjer, 2006)).

We chose values for the simulation parameters by obtaining rough estimates
of “typical” values from real data. We fitted a set of genes from the Affymetrix
tissue panel data set to achieve this. The standard deviation of the residuals,
σnoise, generally lies between 0.5 and 1, with many values lying between 0.7 and
0.8, and so we set σnoise equal to 0.7. To determine reasonable values for the
additive background, we looked at the distribution of signals for the ∼ 16,000
genomic and ∼ 20,000 antigenomic control probes on the array. The distribution
of background signals is not normal; in fact, it is skewed somewhat to the right.
However, for the purposes of the simulation, this is probably not relevant as σBG

is the standard deviation of the probe–wise background within a single gene,
and not that for all genes on the chip. We set µBG equal to 5 (approximately
the empirical mean of the antigenomic control probe signal) and σBG to 0.35
(slightly higher than the empirical σ, which is approximately 0.2).

The mean chip effect, µc, is arbitrary, as it is the mean expression level of
the simulated gene. Similarly, σc is also arbitrary (we set it equal to 1.5). This
is true to a lesser extent for the standard deviation of the probe effects, σp. The
probe effects from fitting the example genes in the tissue panel data had a mean
of 0 and a standard deviation of 3, and so we chose σp equal to 3.

The simulated alternatively spliced gene used for evaluation purposes is il-
lustrated in Figure S2. We chose to simulate a gene with ten exons (four probes
per exon) with six variants, each one with one fewer exon than the preceding
one. When a variant was included in the data, we set Iij = 0 for all four probes
belonging to dropped exons.

500 simulations were performed for each of two different values of µc (7 and
10) and four different probabilities of including a splice isoform (prob=0.1, 0.3,
0.5, 0.8), i.e., eight cases in total. The two values of µc were chosen to mimic
differing scenarios – one where the expression is close to background, and one
where it is far above background.
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full transcript

variant 1

variant 6

variant 5

variant 4

variant 3

variant 2

Figure S2: Structure of the simulated gene, and its isoforms, used to evaluate
the detection algorithm. Boxes denote cassette exons, while lines connect the
adjacent exons in a particular “transcript”.

For each run, the simulated data set contained one gene with ten exons (as
in Figure S2), in 40 chips (samples). We sampled random numbers from U(0, 1)
to determine which of the 40 chips would contain either the full transcript, or
one of the variants 1 through 6 (the variant to be included was also chosen
randomly). We did not simulate the case where a mixture of transcripts was
included in a given sample.

Receiver–Operator Characteristic (ROC) curves are shown in Figures S3 and
S4.

S3 Implementation of Algorithm in R

Because existing Bioconductor functions used to analyze GeneChip©R data re-
quire all the data to be in memory at once, we could not use them because
of the size of the Human Exon array. Furthermore, designation of probes be-
longing both to different exons as well as genes is not supported. Instead we
implemented the FIRMA algorithm in the aroma.affymetrix package for large
datasets which makes use of persistent memory (Bengtsson et al., 2008).

The package relies on the standard chip definition file (cdf) that contains
information regarding the location and grouping of probes on the chip; it also
supports cdfs with grouping of probes into exons as well as genes. Affymetrix
provides a cdf for the Human Exon 1.0 ST chip without any clustering of probe-
sets to genes but merely of probes into probesets. We created custom cdfs ap-
propriate for analysis in aroma.affymetrix that give the gene clusterings of
Affymetrix (“transcript clusters”) as well as a custom cdf file that creates gene
clusters based on the human Ensembl gene build 47 (Hubbard et al., 2007). The
cdfs used in this paper retain the probeset definitions of Affymetrix. These cdfs

3
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(d) Probability=0.8

Figure S3: ROC curves for Single-Sample statistics for varying probabilities of
a chip containing splicing. Note that the false positive rate (x-axis) only ranges
from 0 to 0.2 to better show the main features of the plots.
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Figure S4: ROC curves for All-Sample statistics for varying probabilities of a
chip containing splicing.
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are publicly available in the support pages of aroma.affymetrix.

S4 Details of the Genome-Wide Scan for Muscle
Enriched Genes

Because the pre-commercial array was designed against the November 2002
genome (hg13), we re-annotated their probesets based on the most recent as-
sembly at the time the analysis was performed (hg18) in order to identify the
probesets on the commercial array that corresponded to the confirmed region
of alternative splicing

We scored each probeset by finding the minimum FIRMA score in each of
the two tissue groups (heart and muscle) and then take the maximum,

Sj = max{mini∈heartFij ,mini∈muscleFij},

where Fij is the FIRMA score in the ith sample and jth probeset. This created
an all-sample score, to use our terminology from the main paper. Furthermore,
we excluded probesets without at least 3 probes (roughly 20,000 probesets). To
find the muscle-enriched candidates, we took the probesets with the largest
positive value for this score. For searching for muscle-enrichment, we filtered
low expressing probesets where the probeset summary expression in both the
muscle or heart arrays was below three on the log-scale. This was based at
looking at the distribution of scores and resulted in removing roughly another
100,000 probesets.

In Figure S5a we plot the proportion of splicing calls that match splicing
events as a function of the number of probesets kept for the muscle-specific
score and two general (non-tissue specific) scores. For the comparison with the
Ensembl database, however, we used the largest absolute value of in either heart
or muscle as the muscle-specific score. We also changed our filtering criteria
to filter low-expressing probesets in which all of the tissues, not just heart or
muscle, had an replicate below our threshold, which resulted in removing only
around 45,000 probesets. For searching for general splicing amongst any tissues,
we calculated the range of FIRMA scores per probeset as well as the largest
FIRMA score in any tissue. We expect the range to be more sensitive, since it
will detect situations when there are a large number of extreme residuals (like
with ABLIM discussed above). And indeed the range does better in terms of
matching splicing events in the Ensembl database. We note that the baseline
comparison is 0.26 – the proportion of all the 269,363 non-filtered probesets that
match a splicing event in Ensembl.

S5 Details of Colon Cancer Analysis

We tried to use the criteria of Gardina et al. (2006) in filtering the probesets
to allow for better comparison. Gardina et al. had the following criteria for
removing probesets: 1) probesets with a DABG p-value < 0.05 (an algorithm of
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Figure S5: (a) The proportion of (exon) splice calls that match spliced regions
in Ensembl versus the number of top scoring probesets kept. After the first 1000
probesets, the x-axis switches to a log-scale (in the number of probesets), desig-
nated by the shaded rectangle. Different genome-wide scores for the probesets
are shown: largest absolute FIRMA scores in muscle or heart (red); range of
FIRMA scores across all tissues (black); and largest absolute FIRMA score in
any tissue (grey). (b) Boxplots of top 100 probeset-summarized genome-wide
scores for muscle specific alternative splicing, divided as to whether the probeset
matched spliced regions in Ensembl.

Affymetrix for scoring probesets) 2) all probesets from genes with a signal > 70
3) probesets with a SI > 0.50 4) Core Exons. However, we did not find any of
these values to be easily replicable. For instance, we could not find the DABG
algorithm documented in any Affymetrix white-paper. And the criterion based
on absolute measures, such as gene signal and SI, are highly dependent on the
normalization method – implementing their values cut out a large proportion
of the 200 probesets on their list that passed their filters. There was also no
indication of how many probesets actually passed their filter to use as a guide
to pick roughly similar values for the scale of our normalization. Ultimately,
we decided to do minimal filtering that was similar to theirs but would keep
both their list of 200 and (practically) all of their validated probesets; thus with
a single filtering we could still evaluate all of their results. Thus the filtering
was much more conservative than their final recommendation (though their
validations were a result of experimenting with different filters). This resulted
in a simple filtering based on probeset expression level cutoff of 0.70 (removing
probesets with 50% or more of the samples below that level to be like the DABG
step: 14,223 probesets) and a filtering of probesets from low expressed genes
(signal of < 11 on the intensity scale: 27,444 probesets). Note that we did not
remove probesets with less than three probes because Gardina et al. clearly did
not do so – in fact a couple of the probesets they chose to validate had only one
probe.

We also looked at using the T-statistic rather than the mean difference
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(which we used in the main paper). In Figure S6a, we show the same kind
of plot as Figure 5 but based on a t-statistic based on the individual FIRMA
scores. We see that there is not as clear a division of the confirmed and non-
confirmed probesets, as well as being of much wider range of ranks. While we
chose the mean based on theoretical properties, this gives mild support to this
choice, though it is still difficult to conclude based on the 53 probesets.
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Figure S6: (a) Empirical Cdf of the t-statistic based on the paired differences
in FIRMA scores. (b) Empirical cdf of the Mean Difference (as in main paper)
but with a histogram of the values for the 200 top probesets of Gardina et al.
(2006). Plotting symbols of the probesets are the same as in Figure 5.

We also can compare the reported scores of Gardina et al. for the top 200
probesets. In figure S6b we superimpose the histogram of mean difference of
the FIRMA scores for those 200 probesets on top of the ecdf shown in the main
paper. We see that the bulk of the (unvalidated) probesets on their list do
not score well with the mean FIRMA difference (this does not change if we
use the t-statistic based on the FIRMA scores, not shown). In figure S7a we
show a scatter plot of the FIRMA mean difference versus the inferred t-statistic
of Gardina et al. (inferred from reported p-values). As noted in the text, the
confirmed and non-confirmed probesets in the top 200 do not separate well based
on the t-statistic of the SI. While it would be useful to also use these results to
compare the SI and the FIRMA algorithm more directly, the different choices in
filtering and the different techniques of normalization and summarization also
account for a great deal of the difference. For example, in figure S7b we show
a scatter plot of the mean difference in SI, using estimates based on the IRLS
(RMA) versus the PLIER algorithm; there is only a very weak correlation and
thus much of the differences we see in the two results may be due to this.
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Figure S7: S7a A scatter plot of the FIRMA based t-statistics versus the (in-
ferred) SI based t-statistics reported by Gardina et al. (2006) for the top 200
probesets reported by Gardina et al. (2006). S7b A scatter plot of the mean
log difference of the Splicing Index when gene and exon effects are estimated by
RMA versus the reported log difference of the Splicing Index (thus estimated
with PLIER) for the top 200 probesets of Gardina et al.. Superimposed on both
plots are the probesets which correspond to a probeset chosen for validation.
The plotting symbols for these probesets are as in Figure 5
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S6 Effect of Non-responsive Probesets

As discussed in the main text, if all of the probes in a probeset are non-
responsive, the model for differential alternative splicing will often detect this
as alternative splicing. We show some expression patterns in Figure S8 that
demonstrate some problematic or confusing patterns that were found in various
genome-wide searches that we performed. These are all examples of when a few
arrays are expressed for the gene while the remaining arrays are not expressed.
In such cases drops in expression to background level could be a splicing event
in those few expressed arrays; however since there is no signal in that probeset
from the other arrays, this could be a non-transcribed region of the genome or a
case of differential expression. This is not a problem in the algorithm or model,
per se, but can confound results.
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Figure S8: Examples of situations with patterns of differential expression that
are difficult to interpret.

A similar phenomena can happen when all of the arrays show expression for a
gene, except for a particular probeset where all of the arrays drop to background
level. If this results in a simple linear shift of the expression of the arrays, then
such a shift will be included in the probe affinity estimate (see above) and will
not result in a high FIRMA score. However, often when all of the arrays are
at background level, the level of the expression of the arrays will not remain
the same but be generally random and in addition the standard deviation of
the signal often changes dramatically. We can see this by looking at all of
the probesets, not just those corresponding to our Ensembl cdf, for CACNB1
(Figure S9) a gene that shows some levels of differential gene expression in
the different arrays. We can see that most, though not all, the probesets not
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supported by Ensembl annotation (labeled in green) express at background level
and do not show the levels of variability in expression otherwise apparent for
this gene. We also note that the same behavior can also be seen in the first
two probesets, which are supported by the Ensembl annotation and probably
represent alternative 3’/5’ endings. Such heteroscedasticity will result in larger
residuals for these probesets and thus larger FIRMA scores.
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Figure S9: The log intensity expression of CACNB1 including all probesets
associated with Affymetrix’s transcript cluster. Probesets not corresponding
to the Ensembl mapping that we used in the main text have labels colored in
green. The nested probe effects p̂k(j) are subtracted off here as in Figure S1 to
emphasize the shift in expression level of these probesets.

The influence of poorly expressing probesets will particularly be a problem
when additional probesets with less support from known annotation are ana-
lyzed. This heteroscedasticity will cause a large number of false positives, a
problem that explodes in magnitude once more putative regions are included.
The large increase in such probesets will also affect the chip effect estimates by
overwhelming the ability of the robust fitting to estimate the true gene expres-
sion level. This is not specific to the FIRMA model but is a similar problem for
summaries based on the SI, for example.

S7 Legends for Additional Figures

We provide additional material in the Supplementary Materials in the form of
files that contain the same plots for many different genes; legends for these
figures are given here.
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Figure S10: Validated FirmaScores.pdf: Each page in these files gives the
FIRMA scores (top), residuals (middle) and normalized intensity values (bot-
tom) for the eleven validated muscle-enriched genes alphabetically ordered.
The x-axis for all of the plots indexes the probes, grouped by probeset; probe-
sets are ordered along the chromosome. The label of the probeset of interest is
in red. Per gene, the x-axis of each of the plots is aligned. For the residual and
intensity plots, each chip is a separate line. Intensity values are on the log-scale.
For the FIRMA scores, the value of the score for each sample is indicated by
the same color scale as Figure 1 in the main text. The lines and labels of muscle
and heart tissues are colored red and those of thyroid colored yellow

Figure S11: Enrich15Candidates FirmaScores.pdf: Each page in this file plots
gives the FIRMA scores (top), residuals (middle) and normalized intensity val-
ues (bottom) (as described in legend for Figure S10) for the fifteen candidate
probesets highlighted in the paper. Below the intensity plots are corresponding
transcripts from Ensembl. The green gene model represents the coordinates of
the Affymetrix probesets corresponding to the intensity plots. The yellow gene
model represents the concatenation of all exons in Ensembl corresponding to
that gene. The purple gene models correspond to actual transcripts reported in
Ensembl identified to that gene.
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