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Pyramid match kernels
We consider the space of feature sets: S = {X|X = {x1, · · · , xn}} ,
where xi ∈ V ⊆ Rd is the feature vector, V is the vector
space of features, and n is the cardinality of the feature set. Note
that the pyramid match algorithm requires the dimensions of the
feature vectors to be the same, i.e., d, while the cardinalities of
different sets can be different. Given two vector sets Y and Z
in S, a partial matching between Y and Z is an assignment of
each vector in the smaller set to a unique vector in the larger set.
In the general case of sets with different cardinalities, there are
some vectors left unmatched in the larger set. The optimal partial
matching between two vector sets corresponds to the assignment
that results in maximum total similarity obtained by summing
up the similarities between each pair of matched vectors. Exact
computation of the optimal partial matching is computationally
expensive. The pyramid matching is an efficient approximation to
the optimal partial matching with linear (in the number of feature
vectors in each set) time complexity.

The pyramid match algorithm partitions the feature space V into
bins (regions) with increasingly larger granularity. At the finest
level, all distinct vectors are guaranteed to be in different bins.
The size of the bin increases gradually until a single bin occupies
the entire feature space. Each partition of the feature space results
in a histogram, and the different partitions lead to a hierarchy
(pyramid) of histograms with increasingly coarser resolution (Fig.
2). It follows from this construction that no vectors share the same
bin at the finest level of resolution while all vectors share the same
bin at the coarsest level. Hence, any two feature vectors from any
two sets begin to share a bin at some level in this histogram pyramid,
and they are considered to be matched at this point. The distance
between any two vectors can be bounded from above by the size
of the bin in which they are matched. Thus the pyramid match
algorithm can extract an approximate matching score between two
sets of vectors without computing any of the pairwise similarities.

Let the histogram pyramid for a vector set X be defined as:

Ψ(X) = [H0(X), · · · , HL−1(X)] ,

where X ∈ S, L = dlog2 Re + 1, R is the maximal range of the
components of vectors in V , and Hi(X) is a histogram vector for
the set X corresponding to the histogram with bins of side length
2i. In this construction of histogram pyramid, the side length of
the bin is doubled at each of the successive steps. To calculate the
similarity between two histograms, we need to define the histogram
intersection function I as

I(U, V ) =

m∑
i=1

min (Ui, Vi) ,

where U and V are two histograms with m bins, and Ui and Vi
are the counts for the ith bins of U and V , respectively. A newly
matched pair at certain level is defined as a pair of vectors that
share a bin at this level of resolution, but are in different bins at
any finer resolution level. The number of newly matched pairs Ci at

the ith level can be obtained by subtracting the intersection function
evaluated for the ith level by that of the immediate preceding level
as

Ci = I (Hi(Y ), Hi(Z))− I (Hi−1(Y ), Hi−1(Z)) .

The similarity between the two sets Y and Z is defined as a
weighted sum of the number of newly matched pairs at each level
of the histogram pyramid. Intuitively, vectors that are matched in
smaller bins should be given larger weights than these matched in
larger bins. In the initial construction proposed in Grauman and
Darrell (2005), the weight for the ith level histogram is set to
d2i to reflect the geometric bound for the distance between any
two feature vectors sharing a particular bin. The (unnormalized)
similarity between Y and Z can be defined as:

P̃ (Ψ(Y ),Ψ(Z)) =

L−1∑
i=0

d2iCi.

Finally, to avoid favoring sets with larger cardinality, the similarity
is normalized by dividing each set’s self-similarities as:

P (Ψ(Y ),Ψ(Z)) =
1

N
P̃ (Ψ(Y ),Ψ(Z)),

where N = P̃ (Ψ(Y ),Ψ(Y ))P̃ (Ψ(Z),Ψ(Z)).
The original pyramid match algorithm proposed in Grauman and

Darrell (2005) generates uniform bins over the feature space, and
the size of the bin is doubled at each of the successive steps in the
pyramid. Such a pre-determined construction fails to take advantage
of the underlying structure in the feature space, and it suffers from
distortion factors that increase linearly with the dimension of the
features (Grauman and Darrell, 2006). Grauman and Darrell (2006)
proposed the vocabulary-guided pyramid match algorithm in which
the positions and sizes of bins in the multi-resolution histograms are
determined by applying the hierarchical clustering algorithm on the
feature vectors. Each level in the hierarchical clustering corresponds
to one level in the histogram pyramid, and the position and size of
each bin at a particular level is determined by the clusters at that
level. The weight for each match can also be made data-adaptive
by estimating the inter-feature distance geometrically. It was shown
that this data-dependent hierarchical decomposition scheme can
maintain consistent accuracy when the dimension of the feature
space increases (Grauman and Darrell, 2006).

Proof of Theorem 3.1
We show in the following lemma that maximization of the objective
function in Eq. (1) is equivalent to the minimization of an alternative
criterion.

LEMMA 5.1. The kernel matrix that maximizes the objective
function in Eq. (1) is also the minimizer of the following objective
function:

F1(K,B) =

k∑
i=1

(
‖Kβi − hi‖2 + λβTi Kβi

)
, (6)

whereB = (β1, · · · , βk), hi is the ith column ofH whereHHT =
C.



PROOF. Since the null space of K2 + λK lies in the null space
of KCK, the optimal value achieved by the optimization problem
in Eq. (1) is given by trace

(
(K2 + λK)+KCK

)
. Consider the

maximization of the following objective function with respective to
B:

F2(K,B) =

k∑
i=1

(
βTi Khi

)2
βTi (K2 + λK)βi

. (7)

The optimal βi is given by β∗i = (K2 + λK)+Khi. Thus the
maximum value of F2(B,K) achieved by B∗ = [β∗1 , · · · , β∗k ] is
given by F ∗2 (K) = trace

(
(K2 + λK)+KCK

)
. This shows that,

when optimized with respective to B, the objective functions in
Eqs. (1) and (7) achieve the same value.

We next show the equivalence between objective functions in
Eqs. (6) and (7). The objective function F1(K,B) in Eq. (6) is the
least squares cost function in the kernel-induced feature space, and
its optimal value is

F ∗1 (K) = −
k∑
i=1

(Khi)
T (K2 + λK)+Khi + hTi hi. (8)

Thus maximizing
∑k
i=1 (Khi)

T (K2 + λK)+Khi with respective
to K is equivalent to minimizing F ∗1 (K). This completes the proof.

Note that the matrix C obtained from standard clique and star
expansions is symmetric and positive semidefinite. Thus the matrix
H is always well-defined. We are now ready to prove Theorem 3.1.

PROOF. Let ξi = Kβi − hi. Define the Lagrangian function for
the optimization problem in Eq. (6) as follows:

L =

k∑
i=1

‖ξi‖2 + λ

k∑
i=1

βTi Kβi −
k∑
i=1

ψTi (Kβi − hi − ξi), (9)

where the ψi’s are the vectors of Lagrangian dual variables. By
following the standard Lagrangian technique, we get the Lagrangian
dual function as

g(ψ1, · · · , ψk) =

k∑
i=1

(
−1

4
ψTi

(
I +

1

λ
K

)
ψi + ψThi

)
. (10)

The optimal ψ∗1 , · · · , ψ∗k can be obtained by maximizing the dual
function. Since strong duality holds, the primal and dual objectives
coincide and the optimal K can be computed by solving the
following optimization problem:

min
θ : θ ≥ 0,

θT r = 1

max
ψ1,··· ,ψk


k∑
i=1

− 1

4
ψ
T
i

I +
1

λ

p∑
j=1

θjKj

ψi + ψ
T
i hi

 .

Since
∑p
j=1 θjrj = 1, the above objective function can be

expressed as
p∑
j=1

θj

k∑
i=1

(
−rj

4
ψTi ψi −

1

4λ
ψTi Kjψi + rjψ

T
i hi

)
,

Thus it follows from the definition of Sj(Ψ) in Eq. (5) that the
optimization problem in Eq. (5) can be expressed equivalently as

max
θ:θ≥0,θT r=1

min
Ψ

p∑
j=1

θjSj(Ψ). (11)

Assume Ψ∗ is the optimal solution to the problem in Eq. (11),
and define γ∗ =

∑p
j=1 θjSj(Ψ

∗) as the minimum value. We

have
∑p
j=1 θjSj(Ψ) ≥ γ∗, for all Ψ. By defining γ =

minΨ

∑p
j=1 θjSj(Ψ) and substituting γ into the objective, we

prove this theorem.

Solving the SILP problem
The optimization problem in Eq. (3) is an SILP, since both θ and
γ are linearly constrained, and there are an infinite number of
constraints, one for each possible value of Ψ. As in Sonnenburg
et al. (2006), we propose to use the column generation technique
to solve this SILP problem. In this technique, the optimal θ and γ
are computed for a restricted subset of constraints in Eq. (4). This
problem is called the “restricted master problem”. Constraints that
are not satisfied by current θ and γ are added successively to the
restricted master problem until all constraints are satisfied. For fast
convergence of the algorithm, it is desirable to add a constraint that
maximizes the violation for current θ and γ. That is, the Ψ value
that solves:

Ψθ = argmin
Ψ

p∑
j=1

θjSj(Ψ), (12)

is desired. If
∑p
j=1 θjSj(Ψ

θ) ≥ γ, then all the constraints are
satisfied, and θ and γ reach their optimal values. Otherwise, this
constraint is added to the restricted master problem, and the iteration
continues.

It follows from the definition of Sj(Ψ) in Eq. (5) that the problem
in Eq. (12) can be written as:

min
Ψ

k∑
i=1

{
1

4
ψTi ψi +

1

4λ
ψTi

(
p∑
j=1

θjKj

)
ψi − ψTi h

}
. (13)

For a fixed θ, the problem in Eq. (13) is an unconstrained convex
quadratic program whose solution can be obtained analytically. To
avoid computing the matrix inverse, we obtain Ψ by solving the
following k systems of linear equations:(

1

2
I +

1

2λ

p∑
j=1

θjKj

)
ψi = hi, for i = 1, · · · , k. (14)

After Ψ is computed, the corresponding constraint is added to the
restricted master problem to obtain the intermediate θ and γ. Since
the restricted master problem is a linear program, the proposed
algorithm for solving the SILP problem alternates between solving
k linear systems and a linear program. Note that the coefficient
matrix is the same for all the k linear systems, and the LU
decomposition (Golub and Van Loan, 1996) needs to be computed
only once. Only the forward/backward substitution needs to be
performed k times to obtain the solutions.

The alternating algorithm for solving the proposed SILP problem
belongs to a family of algorithms for solving general SIP
problems called the exchange methods, in which the constraints
are exchanged at each iteration. It follows from Theorem
7.2 in Hettich and Kortanek (1993) that these methods are
guaranteed to converge. Similar to the convergence criterion used
in Sonnenburg et al. (2006), the algorithm returns when |1 −∑p
j=1 θ

(t−1)
j Sj(Ψ

(t))/γ(t−1)| ≤ ε, where θ
(t−1)
j , for j =

1, · · · , p, and γ(t−1) are the optimal solutions to the restricted
master problem at the (t − 1)th iteration, Ψ(t) is the Ψ value that
maximizes the constraint violation at the tth iteration, and ε is a
user-specified tolerance parameter. We set ε = 5 × 10−4 in our
experiments.



Table 5. Performance of individual kernels on gene expression pattern annotation in terms of macro F1 score.

Feature SIFT SC PCA-SIFT SPIN SF DI CF MI CC
Grid size 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32

Star 0.5326 0.5222 0.4659 0.4648 0.5418 0.5173 0.5217 0.5187 0.5279 0.5197 0.5295 0.5132 0.5319 0.5255 0.4951 0.4519 0.5294 0.5087
Clique 0.5363 0.5272 0.4695 0.4718 0.5417 0.5194 0.5270 0.5251 0.5330 0.5233 0.5311 0.5172 0.5346 0.5319 0.4977 0.4550 0.5324 0.5123
kCCA 0.5218 0.5140 0.4555 0.4557 0.5297 0.5079 0.5091 0.5097 0.5170 0.5094 0.5189 0.4993 0.5195 0.5164 0.4877 0.4391 0.5242 0.4990
Original 0.4619 0.4652 0.2517 0.2971 0.4765 0.4383 0.4030 0.4207 0.4610 0.4379 0.4489 0.4038 0.4703 0.4673 0.4050 0.2755 0.4640 0.4127
MIMLSVM – 0.2760 – 0.2001 – 0.1980 – 0.3011 – 0.1922 – 0.1790 – 0.2062 – 0.1633 – 0.2729

This table shows the macro F1 scores obtained by each individual kernel for a data set of 1000 image sets and 10 terms. Total of nine local descriptors (‘SIFT’: SIFT descriptor; ‘SC’: shape
context; ‘PCA-SIFT’: PCA-SIFT; ‘SPIN’: spin image; ‘SF’: steerable filters; ‘DI’: differential invariants; ‘CF’: complex filters; ‘MI’: moment invariants; ‘CC’: cross correlation) applied on
grids of two different sizes (16 and 32 pixels) are used. The row headed with “Original” shows the performance of kernels without embedding. We compare the proposed formulations with
the multi-instance multi-label method MIMLSVM proposed in Zhou and Zhang (2007). The codes are obtained from the authors, and the features are normalized to the interval [−1, 1]

across all bags (as suggested by the authors). The results for MIMLSVM on grid size of 16 are not available due to computational resource limitations. The performance shown in this table
is the averaged scores over ten random partitions of the entire data set into training and test sets with ratio 1:1.

Table 6. Performance of individual kernels on gene expression pattern annotation in terms of micro F1 score.

Feature SIFT SC PCA-SIFT SPIN SF DI CF MI CC
Grid size 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32 16 32

Star 0.5478 0.5353 0.4767 0.4721 0.5576 0.5291 0.5394 0.5355 0.5419 0.5348 0.5439 0.5275 0.5453 0.5395 0.5065 0.4654 0.5449 0.5213
Clique 0.5526 0.5401 0.4806 0.4795 0.5585 0.5317 0.5444 0.5424 0.5471 0.5389 0.5469 0.5322 0.5482 0.5461 0.5101 0.4678 0.5482 0.5256
kCCA 0.5393 0.5290 0.4685 0.4652 0.5494 0.5220 0.5304 0.5293 0.5342 0.5286 0.5365 0.5172 0.5348 0.5319 0.5012 0.4548 0.5420 0.5141
Original 0.5039 0.5065 0.3160 0.3526 0.5152 0.4824 0.4545 0.4640 0.5018 0.4867 0.4965 0.4570 0.5133 0.5107 0.4519 0.3507 0.5058 0.4651
MIMLSVM – 0.3282 – 0.2738 – 0.2731 – 0.3489 – 0.2771 – 0.2884 – 0.3116 – 0.2394 – 0.3302

This table shows the performance of each individual kernel in terms of micro F1 score. See the footnotes of Table 5 for detailed explanations.

Performance of individual kernels
We evaluate the performance of each individual kernel on a data
set of 10 terms and 1000 image sets. To incorporate the correlation
among patterns sharing common embryonic structures, we apply the
proposed hypergraph spectral learning framework in which patterns
sharing common embryonic structures tend to be close to each
other. Tables 5 and 6 show the macro and micro F1 scores obtained
with kernels constructed from various local descriptors. In general,
kernels constructed from global features achieve lower performance
than those constructed from local features, and their results are
omitted due to space constraints. By treating each feature set as
a bag, the automated annotation of gene expression patterns can
also be approached with multi-instance learning methods. Recently,
multi-instance learning for multi-label data has been proposed by
Zhou and Zhang (2007), and we also report the performance of
the MIMLSVM algorithm (Zhou and Zhang, 2007) for this data
set. Note that the existing approach (Zhou and Peng, 2007) can
only handle the case in which terms are associated with individual
images, and hence it cannot be applied to our data set.

We can observe from Tables 5 and 6 that in terms of both
macro and micro F1 scores, kernels constructed by clique expansion

consistently outperform other kernels. The original kernels achieve
lower performance than those constructed with hypergraph. This
implies that incorporation of the correlation information among
patterns sharing common structures captured by the hypergraph
can significantly improve the performance of kernels. The multi-
instance, multi-label learning algorithm MIMLSVM achieves the
lowest performance in terms of both measures.

By comparing the performance of kernels derived from different
local descriptors, we can see that the kernels constructed from SIFT
and PCA-SIFT achieve superior performance. This is consistent
with the conclusion reached by a recent systematic evaluation that
SIFT-based descriptors perform best (Mikolajczyk and Schmid,
2005). It can also be observed from Tables 5 and 6 that
the spin image descriptor (Lazebnik et al., 2005) also achieves
competitive performance. This is consistent with the fact that the
spin image descriptor is designed to capture texture information,
and such information is critical in pattern discrimination. In
terms of grid size, kernels constructed on a grid size of 16
pixels consistently outperform those constructed on a 32-pixel
grid. However, computational resource limitations prevent us from
decreasing the grid size further.


