Supplementary material

The search engine of MetaRoute is an extended version of a graph-based
approach which we recently reported [Blum and Kohlbacher, 2008]. Several
novel concepts (explained in the following two sections) improve both the
search time and quality of the result. The search performance of MetaRoute,
compared to our previous work, is presented in the last section.

Graph representation

Our graph representation integrates precalculated atom mapping rules.
Therefore, each reaction in the network is decomposed into a set of all possi-
ble educt /product pairs where at least one atom is transferred from the educt
to the product according to the atom mapping rule of that reaction. Then
each node in the graph represents a unique educt/product atom mapping
pair (E;, P;). All reactions which have such a pair in common are associated
with the corresponding node. This allows a more compact representation of
the reactions because frequent metabolic transitions like acetyl-CoA/CoA
or glutamate/2-oxoglutarate, which are shared by 117 and 67 reactions re-
spectively in the ‘super network’, are summarized by one single node. The
reverse reactions are represented by product/educt pair nodes. Each edge in
the graph connects two nodes (E;, Pj) and (Ey, P}) if P; = Ej and if at least
one atom is transferred from FE; to P, according to the sequential application
of the atom mapping rules of the two nodes.

Although this (transition) graph requires many more nodes and edges
compared with other graph representations, it is more suited to our path
finding algorithm. Each biochemically feasible route consisting of two suc-
cessive reaction steps is implicitly represented by one edge in the transition
graph because each node codes one educt/product conversion. Therefore,
the path finding algorithm does not have to deal with a huge number of
routes that contain irrelevant metabolic conversions like glucose-6-phosphate
— ATP — AMP because there will be no edge between the nodes repre-
senting the educt/product pairs glucose-6-phosphate, ATP and ATP, AMP.

The computational complexity can be further reduced by the restriction
of only tracing the transition of one atom type. For example, if we are
interested in questions concerning the carbon metabolism, we can simply
ignore nodes and edges where no carbon atom is transferred. The same can
be done for the nitrogen, sulfur, or phosphorous metabolism.

In the weighted metabolic networks approach [Croes et al., 2005] a bi-
partite graph is used where the edges connect the compound nodes with
the reaction nodes. Each (compound) node is assigned a weight equal to its
degree (number of reactions it is participating in as educt or product). Then
the lightest path search significantly reduces the probability of finding irrel-
evant routes containing network hubs or pool metabolites (e.g. ATP, HyO)



as main intermediates. However, this approach fails to find routes passing
pathways of the core metabolism (like glycolysis or TCA cycle) because fre-
quently occuring compounds (like pyruvate or acetyl-coA) have to be traced.
Therefore, we create an additional weight that also considers the context of
the traced reactions as a counterpart to the compound weight. The context
of a reaction contains all compounds of that reaction which are not used
as intermediates in the path search. Each reaction Ry (; ;) associated with
the transition node (Ej;, Pj) gets a context weight for that node. The con-
text consists of all educts E, k # i and products Py, k # j of Ry, (; ;. The
weight of Ry, ; ;) is the summed context weight of its context compounds.
The higher (lower) the number of reactions in the metabolic ‘super network’
a compound participates in, the lower (higher) is its context weight. We use
a function (based on piecewise linear interpolation) that maps the reaction
count to the context weight and is defined as follows:
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where:
e cw(i): the context weight of compound i in the network

e rc(i): the reaction count of compound i (number of reactions it is
participating in as educt or product)

e by, bo, bs: empirical bounds which seperate compounds in the network
in frequent occuring compounds which will obtain low context weights,
in compounds of medium frequency and in rare occuring compounds
which will get high context weights (b; = 500, by = 100, b3 = 10 in
case of the KEGG ‘super network’)

For example, the reactions EC 1.4.1.4 and EC 2.6.1.42 share the transforma-
tion of 2-oxoglutarate to glutamate where EC 1.4.1.4 uses NADPH, NADP™,
NHj3 and H3O as co-substrates contrary to EC 2.6.1.42 using valine and 2-
keto-isovalerate. The exclusive presence of pool metabolites in the context
(all co-substrates) of EC 1.4.1.4 results in the lower weight of eight compared
to the weight of 239 for the context of EC 2.6.1.42. This weight makes sure
that a biosynthesis route of glutamate via 2-oxoglutarate prefers to trace
EC 1.4.1.4 instead of EC 2.6.1.42 which requires the production and con-
sumption of further amino acids. The compound and reaction weights are
incorporated into our transition graph where each edge represents the in-
termediary metabolite I,,, of two succeeding educt/product transition nodes
(E;, I,) and (Ip,, P;). The weight of each edge is assigned the number of re-
actions (in the network) in which 7,,, participates plus the minimum context



weight of the reactions Ry ( associated with the target transition node
(I, P j)'

Note that a path in the graph can code multiple metabolic routes if more
than one reaction is associated with at least one node in the path. The
combined weighting is more suited to routes passing the core metabolism
like glycolysis and the TCA cycle or routes of the purine biosynthesis which

involve ‘hub compounds’ like ADP as main intermediates.
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Path finding algorithm

We use Eppstein’s k-shortest path algorithm [Eppstein, 1998] which effi-
ciently computes the first k-shortest (or lightest) paths between two given
nodes in a directed graph. Therefore, we create in each search a start node
s and end node e representing the source metabolite Es and product P,
where s is connected to all nodes (Es, P;) and e to (E;, P.). The weights
of the edges connecting s and e with the graph are calculated as described
above. Furthermore, the algorithm is modified to consider the atom mapping
rules. Each extracted path is validated by the sequential application of the
atom mapping rules. Starting with the first node (educt/product conversion
(Es, P1)) the atoms of E, are mapped to P; according to the associated atom
mapping rule. Then for each subsequent educt/product transition (E;, Pj),
only those atoms of E; reached by the mapping in the preceding transition
step are mapped to P;. The path is rejected as irrelevant if no atom of the
source is contained in the product.

Search prerformance

The search performance of MetaRoute was evaluated using the same exper-
imental setting as described in our previous work [Blum and Kohlbacher,
2008]. This enables to demonstrate how the performance is influenced by the
novel concepts of MetaRoute. A similar setting was proposed by Croes et al.
[2005] for evaluating the search performance of graph-based approaches.

Experimental setting

The search performance is evaluated by trying to find experimental verified
biotransformation routes in the metabolic network of E. coli at genome scale.
For this purpose, all annotated routes of the small molecule metabolism with
at least three reactions were extracted from EcoCyc (137 overall). Given the
main source and target metabolites of the annotated routes as start and end
nodes, we calculated the lightest path constrained to use the first as well as
the last reaction of the annotated route. If n annotated routes share the same
main source as well as target metabolites and start as well as end reaction,
we computed the n lightest paths. The quality of the routes found was
measured by comparing the intermediate compounds and reactions with the



annotated routes, and is expressed using sensitivity, specificity and relevance
score, which are defined as follows:
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where:

e {p (true positives): The number of compounds and reactions of the
route found which are also present in the annotated route. The first
and last compounds and reactions are not considered.

e fp (false positives): The number of compounds and reactions of the
route found which are not present in the annotated route.

e fn (false negatives): The number of compounds and reactions of the
annotated route which are not present in the route found.

e smc (structural moiety constraint): This value is set to 1 if the route
found fulfills the structural moiety constraint, and set to 0 otherwise.

If an extracted route was not identical to an annotated one and contains
reactions for which no atom mapping rules could be calculated [Blum and
Kohlbacher, 2008], we manually checked the structural moiety constraint.
Note, that this evaluation precedure produces only relative performance
measures useful for comparing different search strategies because novel routes
could be very different to the annotated ones. More details are available
elsewhere [Blum and Kohlbacher, 2008].

In case of MetaRoute we always use the carbon network (with carbon as
the only traceable atom type) except for the sulfate reduction pathway (Eco-
Cyc ID: SO4ASSIM-PWY) because sulfate and hydrogen sulfide are used
as source and target metabolites. Here, we used the sulfur network (with
sulfur as the only traceable atom type). Furthermore, the novel combined
weighting scheme is used. Because the network under study is approx. five
times smaller than the KEGG ‘super network’, we use five times smaller
frequency borders (100, 20, 2).

Results

The search results are shown in Tab. 1. Compared to our previous work,
MetaRoute shows significant improvements with respect to all performance
measures. The amount of the increase is approximately eight per cent. Now,
nearly all of the extracted routes fulfill the structural moiety constraint
(99%). Especially the routes of the core metabolism (glycolysis and TCA
cycle) and the routes of the purine biosynthesis are better predicted.



Table 1: The search results for 137 experimentally verified biotransformation
routes extracted from EcoCyc are shown here. The results of the verified
routes present only in glycolysis, the TCA cycle and the purine biosynthesis
are also shown. In each section, the first row represents the search approach
of our previuos work and the second that of MetaRoute including all of the
novel concepts. The columns show the average sensitivity (sens), specificity
(spec), structural moiety constraint (smc) and relevance score (rel).

experiment approach sens spec smc rel
all routes ~ Blum and Kohlbacher [2008] 0.86 0.87 0.91 0.86
MetaRoute 0.93 095 0.99 0.94
glycolysis ~ Blum and Kohlbacher [2008] 0.73 0.80 1.00 0.77
MetaRoute 096 096 1.00 0.96
TCA cycle Blum and Kohlbacher [2008] 0.46 0.67 1.00 0.56
MetaRoute 1.00 1.00 1.00 1.00
purine syn. Blum and Kohlbacher [2008] 0.67 0.70 0.75 0.69
MetaRoute 093 094 1.00 0.94
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