
1 SUPPLEMENTARY MATERIALS

1.1 Alternative Models of Rate Heterogeneity
The rate heterogeneity simulated for the data in Section 4.1allows
for specific regions of the alignment that are under different evo-
lutionary pressures, expressed with a step-function like change.
However, in general the variation in evolutionary rates maynot fol-
low such a sharp shift in distribution. In order to test the robustness
of the STHMM to other types of rate variation, we simulated data
under a Gamma model of site-specific rate variation. This wasdone
using the Seq-Gen program of Rambaut and Grassly (1997). The
same topologies were used as for the previous simulation, shown
in Figure 3 of the main paper. Each site is then assigned a ‘relative
rate of evolution’ by Seq-Gen which comes from a Gamma distri-
bution with a shape parameter set by the user. The distribution is
then scaled so that the rates have a mean of 1. For this simulation
the shape parameter was set to 0.3 which allows for a large degree
of site-specific rate heterogeneity.

Figure 1 shows the results from the STHMM for the Gamma
distributed rate variation. We have successfully recovered the
correct recombinant structure that the data was simulated under.
The STHMM is now less certain about the locations of the
topology breakpoints. The evolutionary rate has been captured
in the parameterµ shown in the bottom panel. The frequent
switches in the choice of value forµ reflect the continuously
varying rate. Since our values ofµ are restricted to the grid
[0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 100.0] the poste-
rior probability is often shared between two or more states at each
site since the true value ofµ may not correspond precisely with on
of the HMM states.

1.2 Effect of Substitution Rate on Recombination
Detection

Our ability to detect recombination depends crucially on the amount
of variation we see in the data. In the extreme case of no variation,
the data will be just as likely under any topology and we will not
be able to infer recombination. In order to investigate how sensitive
the STHMM is to the substitution rate we have simulated further
data under differing substitution rates. In order to mimic the sub-
stitution rate, the branch lengths of the topologies used tosimulate
the data using Seq-Gen (Rambaut and Grassly, 1997) were scaled.
This has the effect of changing the expected number of substituti-
ons per site. 50 replicates were run for several different values of
this scaling parameter and in each case the inferred topologies were
recorded. Table 1 compares the success rates of topology recovery
for the different simulations.

The results for the scaling factor of 0.01 are not surprising, since
there was very little diversity between the taxa and so many of the
trees had equal likelihood and the STHMM was unable to distin-
guish between them and infer recombination. For the scalingfactor
of 0.1 the STHMM has inferred recombination in the majority of
cases but since there is still little diversity amongst the taxa it was
unable to recover the true topologies in some cases, particularly
topology one which is the shortest section. When the scalingfac-
tor is 0.5 (i. e. branch lengths of 0.05) the STHMM is able to infer
recombination and also the correct topologies.
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Fig. 1. The posterior probability for the topologies and rates inferred by the
STHMM. We have recovered the true topolgies and the recombinant struc-
ture. The positions of the changes in topology are less precise than those
with the step-function like rate variation. We have also inferred a continuous
variation in evolutionary rate as we move along the alignment.

Table 1. Comparison of the topology recovery rate and
the breakpoint location for several different values of
the branch length scaling parameter. For each value, 50
replicates were generated. The maximum posterior pro-
bability topology for each region was considered and
the number of times the correct topology was used in
each region was recorded. The standard errors for the
breakpoints are shown in brackets.

Scaling Parameter
0.01 0.1 0.5

Topology 1 0.08 0.46 1.0
Topology 2 0.16 0.98 1.0
Topology 3 0.04 0.86 1.0

Breakpoint 1 - 209.12 (9.36) 201.02 (1.69)
Breakpoint 2 - 707.74 (5.24) 706.36 (1.51)

1.3 Convergence of the MCMC Scheme
Since we are unable to calculate exact posterior probabilities we
rely on a MCMC scheme to simulate draws from the posterior. We
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Fig. 2. The posterior probabilities of a breakpoint at each site in the ali-
gnment for five separate runs of the algorithm. The spikes in probability
show that the algorithm is inferring breakpoints in these regions.

would therefore like to know if our algorithm is converging to the
correct target distribution. However, it is not possible toverify that
the Markov chain has converged and we are indeed drawing samples
from the posterior and only corroboratory diagnostics exist. To inve-
stigate the convergence of our algorithm, we have run the method
five times on the same dataset (the 15 taxa dataset discussed in the
main paper) and in each case estimated the posterior probability of
a breakpoint at each site. This was calculated by simply counting
the number of times a breakpoint was sampling from the last 50,000
iterations of the algorithm and dividing by the number of iterations.
These probabilities are shown in Figure 2.

As we can see, the algorithm consistently recovers the correct
breakpoints. This provides us with some evidence that the algorithm
is converging and we are indeed drawing samples from the posterior
distribution.
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