1 SUPPLEMENTARY MATERIALS
1.1 Alternative Models of Rate Heterogeneity

The rate heterogeneity simulated for the data in SectioraHolvs
for specific regions of the alignment that are under diffewro-
lutionary pressures, expressed with a step-function likange.
However, in general the variation in evolutionary rates mafyfol-
low such a sharp shift in distribution. In order to test thbustness
of the STHMM to other types of rate variation, we simulatetada
under a Gamma model of site-specific rate variation. Thisduas
using the Seq-Gen program of Rambaut and Grassly (1997). The
same topologies were used as for the previous simulatiawyrsh
in Figure 3 of the main paper. Each site is then assigned ativel
rate of evolution’ by Seg-Gen which comes from a Gamma distri
bution with a shape parameter set by the user. The distibusi
then scaled so that the rates have a mean of 1. For this siamulat
the shape parameter was set to 0.3 which allows for a largeeleg
of site-specific rate heterogeneity.

Figure 1 shows the results from the STHMM for the Gamma
distributed rate variation. We have successfully recavetiee o o a0 w0 s 1o
correct recombinant structure that the data was simulatettru Fosten 1) Fosten (1)

The STHMM is now less certain about the locations of the
topology breakpoints. The evolutionary rate has been cegtu
in the parametern shown in the bottom panel. The frequent
switches in the choice of value fau reflect the continuously
varying rate. Since our values qf are restricted to the grid
[0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 100.0] the poste-
rior probability is often shared between two or more statezagh
site since the true value of may not correspond precisely with on
of the HMM states.
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Fig. 1. The posterior probability for the topologies and ratesriree by the
STHMM. We have recovered the true topolgies and the recaanbistruc-
ture. The positions of the changes in topology are less ggdtian those
with the step-function like rate variation. We have als@méd a continuous

. i i . variation in evolutionary rate as we move along the alignmen
1.2 Effect of Substitution Rate on Recombination

Detection Table 1. Comparison of the topology recovery rate and
Our ability to detect recombination depends crucially anamount the breakpoint location for several different values of
of variation we see in the data. In the extreme case of noti@mia the branch length scaling parameter. For each value, 50

replicates were generated. The maximum posterior pro-

the data will be just as likely under any topology and we wét n bability topology for each region was considered and

be able to infgr recombinatiqn. .In order to investige}te hewsdtive the number of times the correct topology was used in
the STHMM is to the substitution rate we have simulated frth each region was recorded. The standard errors for the
data under differing substitution rates. In order to minfie sub- breakpoints are shown in brackets.

stitution rate, the branch lengths of the topologies usesinmlate
the data using Seq-Gen (Rambaut and Grassly, 1997) werdscal _
This has the effect of changing the expected number of gutisti Scaling Parameter

ons per site. 50 replicates were run for several differehtegof 0.01 0.1 0.5

this scaling parameter and in each case the inferred tojeslegere

recorded. Table 1 compares the success rates of topologyergc Topology 1 0.08 0.46 1.0

for the different simulations. Topology 2 0.16 0.98 10
Topology 3  0.04 0.86 1.0

The results for the scaling factor of 0.01 are not surprisaiigce
there was very little diversity between the taxa and so mdrijie
trees had equal likelihood and the STHMM was unable to distin Breakpointl - 209.12(9.36) 201.02(1.69)
guish between them and infer recombination. For the scédicipr Breakpoint2 - 707.74(5.24) 706.36 (1.51)
of 0.1 the STHMM has inferred recombination in the majorify o
cases but since there is still little diversity amongst tpatit was
unable to recover the true topologies in some cases, pariicu
topology one which is the shortest section. When the scdting -3 Convergenceof theMCMC Scheme
tor is 0.5 (i. e. branch lengths of 0.05) the STHMM is able t@in  Since we are unable to calculate exact posterior probiaisilive
recombination and also the correct topologies. rely on a MCMC scheme to simulate draws from the posterior. We
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Fig. 2. The posterior probabilities of a breakpoint at each sitehim ali-
gnment for five separate runs of the algorithm. The spikesrabability
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show that the algorithm is inferring breakpoints in thesgaes.

would therefore like to know if our algorithm is converging the
correct target distribution. However, it is not possible/éuify that
the Markov chain has converged and we are indeed drawinglsamp
from the posterior and only corroboratory diagnosticsteXis inve-
stigate the convergence of our algorithm, we have run thdodet
five times on the same dataset (the 15 taxa dataset discuste i
main paper) and in each case estimated the posterior pliopalbi
a breakpoint at each site. This was calculated by simply toagin
the number of times a breakpoint was sampling from the |a§iC80
iterations of the algorithm and dividing by the number ofaté@ns.
These probabilities are shown in Figure 2.

As we can see, the algorithm consistently recovers the corre
breakpoints. This provides us with some evidence that tharighm
is converging and we are indeed drawing samples from thepost
distribution.
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