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Supplemental Experimental Procedures 

Chronic Animal Surgery 
For chronic experiments, 28 Long Evans rats (male, 250-400 g) and 11 mice (male, 30-40 
g) were deeply anesthetized with isoflurane or ketamine/xylazine. Details of surgery and 
recovery procedures have been described earlier (Csicsvari et al., 2003). Various 
electrodes were implanted for unit and LFP recording. All rats and mice were implanted 
with a microdrive that allowed the positioning of recording electrodes. In 13 rats, linear 
silicon probes (NeuroNexus Technologies,16 recording sites at 100 µm vertical spacing) 
were implanted in somatosensory/parietal cortex and the CA1 pyramidal layer of the 
dorsal hippocampus (Sirota et al, 2003). In one rat, a single shank linear silicon probe 
was implanted in the medial prefrontal cortex. In four rats, high density 8-shank ‘octrode’ 
(15 µm spacing), 64-site probes, (Bartho et al., 2004) were implanted in the medial 
prefrontal cortex (AP 3.0-4.4, ML 0.5) and posterior hippocampus. In 3 rats, 6-shank, 96-
site linear probes were implanted in the parietal cortex in the right hemisphere parallel to 
the transverse axis of the hippocampus (45o parasagittal) with the outer shanks targeted at 
approximately (AP -2.8, ML  2.7), and (AP -3.86, ML 1.64) with tips in the CA1 
pyramidal layer of the dorsal hippocampus (Montgomery and Buzsaki, 2007). The 
position of the electrodes was confirmed histologically. In 4 rats and 11 mice 2 to 8 
independently movable wire tetrodes were implanted in the parietal cortex and 
hippocampus (Sirota et al., 2003; Zugaro et al., 2005). In all chronic experiments ground 
and reference screws were implanted in the bone above the cerebellum. 

Chronic Animal Behavior 
Four rats with electrodes implanted in prefrontal cortex were trained in a working 
memory task (spontaneous alternation task or odor-based delayed matching-to-sample 
task in a figure 8-shape maze). The remaining rats were trained to run on a linear track 
for water reward (Zugaro et al., 2005). In addition, the animals were recorded during 
sleep in the home cage. Spectral features of the LFP were used to segment the recording 
session into periods of REM sleep and awake running (“theta-associated behaviors”; 
Figure S1). Analysis was performed on 95 REM sessions and 34 waking run sessions. In 
27 cases, data from the same set of neurons was recorded during both REM and waking 
sessions.   



Acute Experiments 
Experimental details for the acute experiments, along with other data from the same 
animals, have been published (Isomura et al., 2006).  

Data Acquisition and Processing 
Extracellular signals were amplified and filtered by multi-channel AC amplifiers 
(Sensorium EPA5 or RC Electronics; 1000x; 1 Hz to 5 kHz). The intracellular signals 
were amplified with a DC amplifier (Axoprobe 1A; Axon Instruments). Wide-band 
extracellular and intracellular signals were digitized at 20 kHz sampling rate with 16-bit 
resolution and stored for offline analysis using one or two synchronized 64-channel 
DataMax Systems (RC Electronics, Santa Barbara, CA, USA). Raw data were 
preprocessed using a custom-developed suite of programs (Csicsvari et al., 1999). The 
wide-band signal was downsampled to 1.25 kHz and used as the local field potential 
signal. For spike detection, the wide-band signal was high-pass filtered (>0.8 kHz). 
Single units were isolated semi-automatically by a custom-developed clustering analysis 
program KlustaKwik (http://klustawik.sourceforge.net) (Harris et al., 2000) and refined 
manually using custom-made software (http://klusters.sourceforge.net; 
http://neuroscope.sourceforge.net; Hazan et al., 2006). For tracking the position of the 
animals, two small light-emitting diodes, mounted above the headstage, were recorded by 
a digital video camera and sampled at 30 Hz. Malfunctioning recording sites (e.g., due to 
high impedance, cross-talk or short circuit) were removed from the analysis (shown in 
gray in the plots in Figures 3,4,5,6 and 8). Current-source density (CSD) was calculated 
using a robust second derivative approximation scheme (Freeman and Nicholson, 1975). 
Spatial smoothing with a triangular kernel was applied to remove spatial noise that 
stemmed from the variability of electrode impedances. 

Data Analysis 
LFP, extracellular unit activity and intracellular data were analyzed, unless stated 
otherwise, by custom-written, MATLAB-based programs. Processing was done either on 
a stand-alone Linux server or using a Linux cluster (ravana.rutgers.edu; the authors thank 
Yaroslav Halchenko, Department of Psychology, Rutgers University, for professional 
cluster administration).  
 
Monosynaptic Connections 
For the identification of excitatory and inhibitory connections between neurons, short-
latency, short-duration sharp peaks/troughs in the cross-correlograms were used (Bartho 
et al., 2004;Constantinidis et al., 2001;Csicsvari et al., 1998). Monosynaptic connections 
between pairs of units were detected using a custom-made interactive software followed 
by a non-parametric significance test based on jittering of spike trains for computation of 
the global significance bands (Fujisawa et al., 2008). Significant peaks (p<0.01) within 5 
msec of the center bin were considered as putative excitatory monosynaptic connection. 
Similarly, short-latency troughs were considered to be due to inhibition when at least two 
neighboring 1 msec bins were significantly depressed. For cell pairs recorded from the 
same electrode, the 0-1 msec bin was not considered, because our clustering program 
cannot resolve superimposed spikes.  
 



Cell Type Classification 
For each unit, various parameters were calculated, including 1) filtered (0.8 kHz – 5 kHz) 
spike waveshape parameters: trough to right (late) peak, trough to left (earlier) peak and 
half amplitude width, asymmetry index (ratio of the difference between right and left 
baseline-to-peak amplitudes and their sum), 2) firing rate 3) features of the auto-
correlogram. Next, we explored the multi-dimensional space formed by these parameters 
for the subset of units identified as inhibitory or excitatory based on cross-correlogram 
analysis as described above. The parameters that allowed best separation between the two 
putative anatomical groups were the trough to right peak latency (related to the 
repolarization of the intracellular action potential; Henze et al., 2000) and asymmetry 
index (possibly reflecting differences in the rate of fall of spike repolarization). We used 
the hyperplain that divided the two physiologically identified classes (interneurons and 
pyramidal cells) to separate units into putative interneurons and putative pyramidal cells. 
No attempt was made to distinguish between different types of pyramidal cells or among 
the large family of interneurons (Markram, 2006;Somogyi et al., 1998). The reliability of 
our physiological classification method will require anatomical verification of the 
putative neuron types in future experiments. 
 
Theta Phase Extraction 
LFP in CA1 pyramidal layer was filtered with multitaper filter with bandwidth of 1 Hz 
whose pass-band range was adapted to the instantaneous (within 1 sec window) 
frequency of theta. Instantaneous theta phase was estimated by Hilbert transformation of 
the filtered signal. This procedure ensured that prior distribution of phase is uniform (the 
prior distribution of phases in each session was tested for uniformity prior to unit 
analysis), since otherwise all circular statistics should be corrected for the bias (Siapas et 
al., 2005). Although such definition of phase does not take into account waveshape 
asymmetry, we believe it is a more conservative approach because waveshape asymmetry 
depends on filter settings, instantaneous theta power and frequency and it varies in time. 
Nevertheless, we performed all circular statistics tests with non-uniformity bias-
correction procedure as described in Siapas et al (2005) and these tests were congruent 
with our more conservative approach. 
 
Phase Modulation Analysis 
First, we used the standard Rayleigh test for uniformity of the phase of unit firing. This 
test is the most powerful invariant test of uniformity against the von Mises alternative. 
Rayleigh test is equivalent to a likelihood ratio test, and the statistics of this test 2R2/n (R 
- resultant length, n - sample size) has an asymptotic chi-square distribution with 2 
degrees of freedom (Jammalamadaka and SenGupta, 2001;Mardia and Jupp, 2000). 
Therefore the appropriate statistics for significance test is Z=R2/n, or variance-stabilized 
log(Z). Since statistical distribution is only true asymptotically, the size of the sample can 
also be a factor (for small n). We performed Monte Carlo simulations to test the 
performance of Rayleigh test for small samples and found that p-values were in very 
close agreement for even very small sample sizes. Once the sample is rejected (i.e., 
nonuniform), one must realize that the sample estimate of resultant length R is strongly 
biased upwards, and this bias increases as the sample size decreases. Therefore, all 
measures derived from R, such as the mean resultant length (R/n) and maximum 



likelihood (ML), estimate of the concentration coefficient of von Mises distribution (k) 
and Z= R2/n have a bias, which depends on the sample size if the sample is drawn from a 
nonuniform circular distribution. Therefore, the use of these parameters as quantifiers of 
the modulation strength is not appropriate for small samples. We used Monte Carlo 
simulations to estimate the sample size at which bias in the estimate of R is sufficiently 
small. We find that for sample size >1000 the bias in the estimate of R can be neglected. 
Thus, for comparison across cells and conditions we used concentration coefficient k 
estimated for subpopulation of cells which emitted more than 1000 spikes (Figures S2,9). 
We used both conventional maximum likelihood estimate of k and maximal marginal 
likelihood estimate (Schou, 1978), which has much lower bias for small sample sizes. 
Both estimates agreed well for sample sizes above 1000.  
 
Another issue in this context is the alternative model of Rayleigh test, the von Mises 
distribution. This is an important consideration because phase-modulation of unit firing 
may not follow von Mises distribution, e.g., it could be skewed or multimodal. Thus, the 
Rayleigh test for uniformity is biased to a degree at which the alternative is not von Mises 
type, and can be biased depending on cell firing pattern and state. This will also affect the 
dependence of R and measures derived from it on the sample size. To alleviate some of 
these issues, we performed additional tests: nonparametric goodness-of-fit Kuiper’s and 
Watson’s U2 tests (Jammalamadaka and SenGupta, 2001;Mardia and Jupp, 2000), which 
test for uniformity against any alternative. Both tests statistics were correlated with 
Rayleigh logZ (r>0.9, p<0.00001), suggesting that model choice was not a determinant 
factor (Figure S2). Finally, we computed bootstrap Rayleigh tests by subsampling each 
sample 500 times with a subsample of size 100, which allowed ruling out the effect of 
sample size on the Rayleigh statistics. This approach, however, is dramatically reducing 
the power of the test for cells with high sample size. To this end, we have no rigorous 
resolution for this problem.  
 
Variations in the sample size and contamination of spike train, and therefore a bias on the 
estimates of R, could arise from imperfect spike sorting. We tested for systematic 
correlation between the Rayleigh statistic logZ and cluster quality measure (eDist (Harris 
et al., 2000)). Cleaner clusters tended to be associated with stronger modulation of 
putative interneurons (r=0.21, p<10-5), whereas for pyramidal cells there was no such 
trend (r=-0.001, p=0.45). This could be explained by the generally smaller amplitude of 
interneurons and their stronger contamination by noise (including multiple unit activity of 
more distant neuronal populations and instrumentation noise). Noise-contaminated 
clusters effectively decrease theta phase-modulation because non-biological noise is 
independent of theta phase and firing of other neurons may have different phases than the 
clustered neuron. In summary, noise contamination may have underestimated the degree 
and percentage of significantly modulated interneurons, but it did not affect the results for 
putative pyramidal cells.  
 
Coherence analysis between hippocampal LFP and neocortical spike trains provided a 
frequency resolved measure of theta modulation of spiking activity in the neocortex 
(Figure S3) and was, in general, comparable to circular statistics. 



The significance of theta modulation can be assessed by using binomial distribution for 
the number of rejections of uniformity hypothesis at any given alpha level. For example, 
for pyramidal cells in the parietal cortex the number of rejections of uniformity at 
alpha=0.05 was 12%, whereas the expected chance level is 5%. The significance of the 
excess of the number of rejections is determined by the probability to observe 12% 
(K=63 cells), given the null distribution (binomial with p=0.05 and N=522). This result is 
very significant (from the binomial distribution we obtain p-value<10-10; using normal 
approximation of binomial distribution we obtain Z-score of observed number of 
rejections 7.4). Similarly, for alpha=0.01, the observed rejection percentage is 4%, which 
yields p-value<10-34, z-score =9.1; for alpha=0.001 z-score=17.4. It is clear from Figure 
2E that as alpha is decreasing the excess of rejections beyond chance is becoming 
increasingly significant. For example, there were 9 pyramidal cells (1.7%)  with p-values 
<0.0001; this corresponds to the z-score of ~39!  
 
Mixture Model Fit 
For a subset of significantly nonuniformly modulated neurons we tested whether their 
spike phase distribution is better described by Von Mises distribution, or a more general 
model, a mixture of Von Mises and circular uniform distributions. The procedure was as 
follows: 
Step 1:  Test for uniformity against von Mises alternative (Rayleigh test) 
Step 2:  If uniform is an adequate model (p > 0.05), analysis was discontinued.  
Step 3:  Otherwise, test for “von Misesness” against the mixture alternative using 
likelihood ratio test 
Step 4:  If von Mises model is adequate, the analysis was terminated and the von 
Mises model was used. Goodness of fit test was performed based on Watson's U2 
statistic. 
Step 5:  Otherwise test the fit of mixture model (using goodness of fit test based on 
Watson's U2 statistic; we did not consider models more complex than the mixture model) 
Step 6:  If mixture model was adequate, then the mixture model was used. 
The above-mentioned sequence of tests was performed using a code in R language 
provided by John Bentley (Bentley et al., 2007). For ~11% of neurons the likelihood ratio 
test argued in favor of the mixture model. For the remaining neurons a simpler model 
(von Mises) provided an adequate fit. Because the firing of every neuron is driven 
presumably by a combination of phase-related and phase-independent inputs, a mixture 
model may be more accurate from the physiological point of view for the description of 
phase-modulation. 
 
Spectral Analysis 
Unit and LFP power spectrum and unit-unit, unit-LFP, and LFP-LFP coherence estimates 
were performed using multitaper direct spectral estimates. For theta frequency range, we 
typically used window sizes of 1-2 seconds and 3-5 tapers, and for gamma range – 50-
200 msec and 5-9 tapers. Estimates that involved units were made only on windows that 
contain at least as many spikes as tapers used (Jarvis and Mitra, 2001). For coherence 
estimates we verified homogeneity assumption in a selected set of data by comparing the 
error bars computed by jackknife and theoretical estimate.  



Spatial localization of gamma coherence requires, strictly speaking, multiple comparison 
tests for testing significance. Due to clear topographic localization of LFP with 
significant peaks at the same gamma frequency, we are confident that most permutation 
tests would show a significant effect.  
 
In addition to coherence estimates, we also performed phase-locking index estimation 
(equivalent to Rayleigh test for each frequency bin) and power correlation. These two 
measures are combined in the coherence measure due to nonstationarity of power across 
windows. Invariably, increase in coherence at a certain frequency and location was 
associated with increased phase-locking at the same frequency and location.  
 
Unit-triggered average spectrum was computed in 200-msec windows at different time 
lags from the time of spike for every recording site. The “baseline” spectrum calculated 
for the entire session was subtracted from the unit-triggered spectrum for spatial 
localization analysis to estimate the deviation of the spectrum during unit firing from the 
overall mean. In some cases, increase in absolute gamma power was more prominent in 
the hippocampus than at neocortical sites. This could reflect a non-Poisson and nonwhite 
statistics of unit firing and gamma power. Unit-triggered average spectrum is equivalent 
to a correlation coefficient between the binary process of unit firing and gamma power at 
every frequency bin. As such, it is not known whether both unit firing and gamma power 
are co-modulated by hippocampal theta. In the frequency domain, the cross-correlogram 
is equivalent to cross-spectrum, which contains both amplitude correlation and phase-
locking between the two signals. In our analysis the primary goal is to reveal neocortical 
gamma sources associated with unit firing. Therefore, power spectra of unit firing and 
gamma power may confound the strength of the phase relationship between unit activity 
and gamma oscillations– the goal of the analysis. Moreover, for different recording sites 
the magnitude of gamma power modulation by theta phase may vary. Finally, volume 
conduction of LFP is a further potential confound.  Due to these considerations, unit-
triggered spectral analysis is adequate only for neurons that are not very strongly 
modulated by hippocampal theta and can be reliably associated with a single gamma 
source. 
 
Theta Modulation of Gamma Power 
The predictable effects of volume-conduction can be exploited in some special cases to 
support our general conclusion regarding the hippocampal theta modulation of 
neocortical gamma oscillations.  High frequency gamma (>100 Hz) was well defined in 
the neocortex but weaker in the hippocampus. Importantly, there was a clear gap in the 
spatial profile of power in the high gamma band between neocortical locations and the 
hippocampus (not shown), an convincing argument against volume conduction of 
hippocampal gamma to the neocortex, at least for higher frequencies. We estimated 
gamma power at all cortical locations in short (50-100 msec), temporally overlapping 
sliding windows and determined the magnitude of theta modulation of the resulting signal 
at every gamma frequency bin by calculating the coherence between LFP in the CA1 
pyramidal layer and gamma power time series in the respective frequency bin.  
 
 



Local Maxima of Gamma Power 
To detect isolated gamma bursts in the neocortex, we limited our analysis to gamma 
bursts, which were localized in space, frequency and time and were sufficiently well 
isolated in these dimensions from other gamma bursts. These events were identified as 
local maxima in the 4-dimensional (time x frequency x shank number x site number) 
matrix of spectral power (Figure 4D). This constraint allowed the segregation of gamma 
bursts in terms of their spatial and frequency localization and the examination of their 
theta modulation. Although this approach limits the analysis to gamma bursts with no 
contiguity in any dimension to other gamma bursts, it avoids the problem of linear 
mixing of different gamma sources. Using this approach, were obtained suffiently large 
numbers of gamma bursts in many of our datasets. The local maxima of these gamma 
bursts demonstrated a clear nonrandom clustering in space (Figure 4F) and frequency. 
Because frequency had a clear bimodal distribution (Figure 4E), we divided gamma 
bursts into fast and slow (above and below 100 Hz) events. This classification yielded 5-
15 clusters in a dataset, each with localized spatial and frequency properties. The time of 
occurrence of gamma bursts from individual clusters was then used in the theta phase 
modulation analysis.  

 
Gamma Frequency-Location (gFL) Factor Analysis 
gFL factor analysis consists of the following steps: 

1. Whiten the LFP from all recording sites. Perform autoregressive model of the 
second order with coefficients vector A that fit to the data. This low order model 
essentially fits the “pink” shape of the spectrum (~1/f). Then a filter [1; -A] is 
used to filter the LFP signal to remove the pink component. Whitening essentially 
equalizes the variance across frequency bins and decreases frequency leakage 
during spectral estimates. The same whitening model is used for all sites.  

2. Compute spectrum of whitened LFP for each site in the range of 30-150 Hz for 
overlapping 100 msec windows stepping by 13 msec (steps of 20, 50 and non-
overlapping windows were also tried and did not yield different results, but 
reduced the temporal resolution of the method needed for analysis) that cover all 
robust theta epochs (during REM or RUN session). As a result we obtain nCh 
matrices of size nVariables  = nF * nT, where nCh – number of sites, nF – number 
of frequency bins, nT – number of time bins.  

3. Log-transform the matrices to bring marginal distributions for each variable 
(frequency bin on one channel) to a more symmetric form (closer to normal). 
Concatenate spectral matrices along frequency dimension to form a matrix M of 
size (nF*nCh) x nT. Here nF*nCh – number of variables for future multivariate 
analysis and nT – number of samples. 

4. Perform PCA on matrix M, leave 99.9% of the variance in the model. This gives a 
matrix of principal component eigenvectors W. Since gFL analysis concerns only 
the small subspace (spanned by ~30) eigenvectors, corresponding do largest 
eigenvalues, the amount of data (nT/nVariables ratio was between 10 and 100) 
were large compared with the size of this subspace,and the subspace was well 
populated by data. 

5. Perform orthogonal rotation of the matrix W using the Varimax method (Kayser 
and Tenke, 2003;Reyment and Joreskog, 1993), employing simplicity criteria to 



obtain a matrix of factor loadings. The goal of simplicity criteria is to obtain 
factors with only a few high loadings and near-zero loadings for the majority of 
variables. Such rotation turns factors from simply spanning the directions of 
largest variance, which are not physically meaningful, into factors that capture a 
parsimonious structure in the covariance matrix and is more likely to be 
physiologically meaningful. In short, the essence of the method is this: rotated 
factors will correspond to the directions in the spectral space, which span limited 
frequency bins at a few sites with strong covariance. Another benefit of the 
method is that factor loadings are always non-negative, thus it eliminates the 
ambiguity of the sign of the factor loadings present in PCA. 

6. Compute variance explained by rotated factors, factor scores – projection of the 
data on the rotated factors.  

7. For further analysis, we computed only the first 30 factors because the first 5-20 
factors explained most of the variance. This procedure is likely to result in an 
underestimation of the true number of factors. Factors that had high loadings on 
only 1 or 2 frequency bins or 1 or 2 dispersed sites were considered artifacts and 
removed from the analysis. Factors with maximal loadings on the boundary 
frequency bins stem from spectral leakage from lower or high frequency ranges 
and were also removed.  

8. We further determine the location of the maximum loading of each factor in 
frequency and location. The latter is estimated as the center of mass in anatomical 
space covered by the recording sites. Most factors produced highest loadings 
concentrated around one frequency bin and one anatomical location. Frequency 
and location of the gFL were typically independent of each other. Therefore, for 
each factor we compressed the nF x nCh vector of factor loadings (Figure 4D) 
into two vectors (profiles) – Frequency profile (factor loading across all frequency 
bins at maximal loading location) and Location profile (factor loading across all 
sites at the maximal loading frequency bin). Factors were classified as neocortical 
or hippocampal depending on the anatomical location of the maximal loading. 

9. Factor scores were computed by projecting the original spectral matrix on the 
factor loading vector. To reduce the contribution of the gamma power away from 
the gFL center we set the factor loading values to zero for all elements with 
loading below 15 percentile. In mathematical notation, if X is original data 
matrix, A is a matrix of factor loadings and S is a matrix of scores, we are seeking 
decomposition X=A*S+e, where e is an error term. To obtain the score matrix 
given a matrix A (“project” the data X on A) we computed the pseudo-inverse of 
A and multiplied it with the data matrix X: S=A-1*(X-e). Time series of the factor 
score represents the change of weight of the factor across time. Thus, this 
continuous variable can be interpreted as the “strength” of gamma oscillation 
characterized by both Frequency profile and Location profile (gFL). Coherence 
between gFL score and LFP was performed using multitaper estimates as 
described above. LFP signal was resampled at time stamps centered on the 
spectral windows used to compute the spectrograms (see step 2).  

10. Peaks of gFL scores are detected as local maxima separated by at least 50 msec 
and above 75 percentile of the overall score distribution. Peak times represent the 
occurrence of the gamma “burst” characterized by Frequency and Location 



profiles. Circular statistic analysis was performed on theta phase at the time of 
gamma bursts for each gFL. We found no correlation between the Rayleigh 
statistic logZ and variance explained by the gFL factor (r~-0.06), indicating that 
gamma bursts were theta modulated independent of how prominent they were. 

Partial Coherence Analysis 
Since projection of the large gamma power from sites with small loadings (hippocampal 
sites) can still bias the gFL score due to possible volume conduction from hippocampal 
sites, we computed partial coherence between the neocortical gFL score and LFP by 
partializing it by the gamma power in CA1 pyramidal layer, filtered according to the 
frequency profile of the respective gFL. Partial coherence was considered non-significant 
if its values at theta frequency band fell below the significance level determined from full 
coherence. Clearly, the larger the power of hippocampal gamma, the stronger the effect 
of volume conduction to the neocortex, but the converse is also true – the larger the 
power of neocortical gamma (which is the case for low frequencies), the more it 
contributes to gamma power measured in CA1 pyramidal layer. This may result in 
significant decrease of partial coherence value – false negative result.  

Theta Modulation of LFP-LFP Gamma Coherence 
A limitation of gFL factor analysis is that it is based the spectral power, which limits 
one’s ability to perform linear unmixing of the individual gamma oscillators. Addition of 
phase information to the analysis would strongly improve the method, but requires 
further improvement of this method, a goal which lies beyond the scope of this paper. 
Importantly, the gFL analysis should be considered as an effective exploratory tool to 
identify the location and frequency of individual gamma oscillators but it must be 
validated by spectral analysis which includes phase information of the signal.  

For each gFL we validated the analysis in the following way. We computed coherence 
between the LFP in the center of the gFL-identified spatial gamma profile (center of mass 
of spatial factor loading) and the LFP at all other recording sites. We used spectral 
windows of 50 msec and 9 tapers. The average coherence over the entire session typically 
had a significant peak at the frequency close to preferred frequency of the gFL and had 
spatial profile at this frequency that matched that of the gFL in question (Figure 6J), 
providing a phase-synchronization measure of the local neocortical gamma. Analysis of 
the spatial coherence maps allowed us to determine the presence or absence of local 
oscillations. If no local oscillations are found in the center of gFL, presumably due to 
volume conduction from elsewhere (e.g., from hippocampus), the coherence between the 
center and the location of source of gamma currents (local-distant) is expected to be 
higher than between the center and nearby locations (local-local).  Thus, in case of 
volume conduction the spatial profile of coherence at gamma frequency would have a 
maximum away from gFL center. Since there are always some locally generated currents, 
albeit with flat (white or pink) spectrum, the local-local coherence across all the 
frequencies may be higher than that of local vs. distant.  However, this would be true for 
any frequency bin. In short, presence of high coherence in a narrow frequency band 
spatially confined to the center of gFL can be considered as evidence for locally 
generated gamma. 



To test whether hippocampal theta modulates neocortical gamma, we can use the spatial 
profile of gamma band coherence as a measure of local gamma synchronization. The 
logic behind this approach is as follows. Let us assume that there are two gamma 
oscillators (local-neocortical and distant-hippocampal), the power of the local one is not 
modulated by theta, whereas the power of the distant one is modulated. Then, on average, 
local-local coherence is maximum around the center of neocortical gamma in a frequency 
band of neocortical gamma. Now we can compute the gamma band coherence in short 
moving windows and quantify the coherence of these time series to the theta LFP in 
hippocampus (‘coherence of gamma coherence’ measure). The temporal fluctuation of 
the local-local coherence is coherent with theta oscillations since both local sites at the 
gamma source detect the volume-conducted signal from the distant theta modulated 
gamma source, but the coherence of the fluctuation of local-distant gamma band 
coherence with theta must be stronger, because it is less contaminated by non-theta 
related local gamma. Thus, the spatial profile of the coherence of gamma band coherence 
fluctuation to theta (i.e., theta modulation of gamma synchrony) should have a maximum 
at the source location of theta modulated gamma, and not locally. If, on the other hand, 
the local neocortical gamma is modulated by theta, we should expect to see maximum 
coherence of gamma coherence fluctuations to theta at the center of neocortical gamma 
oscillator. To quantify this relationship, we computed the integrated LFP-LFP coherence 
within the preferred gFL frequency band in short running windows (50-100 msec) for the 
entire session, and estimated the coherence between this time series and hippocampal 
LFP for each pair of all recording sites. We determined the similarity between the spatial 
profile of the coherence of gamma coherence to the spatial profile of average gamma 
coherence and the gFL spatial profile in all sessions recorded with 96-site silicon probes, 
which provide 2d spatial coverage of both neocortex and underlying hippocampus. In 
only a few cases we found that maximal coherence of gamma coherence was localized 
away from the center of respective gFL, indicating that that theta modulation of gamma 
oscillation occurred elsewhere in the neocortex, independent of the sample gFL. In most 
cases, however, gFLs and the coherence profiles strongly overlapped, indicating that the 
power of local neocortical gamma is theta modulated. Thus the effect of volume 
conduction from any other gamma sources can thus be ruled out in this analysis (e.g., 
Figure 6K). 

Potential Caveats of the Gamma Analysis 
Gammas oscillations in the neocortex are typically transient and small amplitude. 
Detection and isolation of such small amplitude signals often require high spatial 
resolution methods and complex mathematical-statistical procedures. Because of such 
complexities, no straightforward tools can be offered. Below, we address some of the 
caveats and solutions of the methods used in our analyses.  

What Is the Effect of Whitening of the LFP Prior to Spectral Analysis?  
There are two main reasons for whitening the signal in our analysis. First, whitening 
reduces the dynamic range of the signal and thus reduces the leakage of low frequencies 
into the higher frequency bins during spectrum estimation. This reduces the bias in the 
spectrum estimation (Pesaran and Mitra, 1998). Second, we wanted the variance at 
different frequency bins to be the same and their contribution to the covariance matrix 



comparable. Whitening adjusts the ~1/f falloff of the spectral power with frequency, 
which is mostly the consequence of the fact that slower frequencies can synchronize over 
large spatial domains and result in larger amplitude signals. It is not the exact power of 
the gamma oscillations in different frequency ranges, but their temporal dynamics, that 
we aimed to explore, and thus we did want to make their contributions to the covariance 
matrix independent of their absolute amplitudes. There is no physiological reason to 
believe that signals of lower power are less important than signals of high power, given 
that they may have different physiological mechanisms. Covariation between power 
values at different recording sites and frequency bins reflects the presence of oscillatory 
source located around these sites with peak power at the corresponding frequency range. 
In statistical terms, whitening is aimed to standardize the data at different frequency bins 
before the factor analysis, a standard procedure in multivariate analysis (e.g. Krzanowski: 
Principles of Multivariate Analysis). 

How Do Harmonics of Theta Confound the Analysis? 
First, the whitening procedure equally emphasizes theta harmonics and genuine gamma 
oscillations, hence whitening makes no difference for the gamma range analysis. Second, 
the maximal power of higher harmonics of theta in the gamma range do not reach, on 
average, more than ~20% (for 2nd) and ~7% (for 3rd, 32-40 Hz) of the average theta 
power at the fundamental frequency. Contributions of higher harmonics are much 
smaller. Therefore, the putative contribution of theta harmonics is limited to the low 
range of gamma frequency band (<40Hz). In contrast, the strongest theta phase 
modulation, according to our various analyses (gamma power, gFL and LFP-LFP 
coherence modulation), was observed at higher frequencies (>100 Hz), which could not 
stem from higher harmonics of theta oscillations. Furthermore, if theta harmonics 
artificially generated gFL factors they would have a center of mass in the hippocampus 
and not in the neocortex. Third, since the power of theta harmonics is independent of the 
power of true gamma oscillations, individual gFLs that could stem from theta harmonics 
could be easily identified. During the screening of gFL factors, we removed all factors 
with maximal loading in the lower frequency bin (30 Hz). Likewise, we did not detect 
local maxima of spectral power with isolated power below 30 Hz.  

Is the Covariance Matrix Well-Conditioned and Does It Affect the gFL Analysis? How 
Robust Is the Method? 
As discussed in the gFL method section, the number of data points was much larger than 
the number of variables. Due to volume conduction, the covariance matrix cannot be 
under-populated. Nevertheless, because of putative volume conduction and comodulation 
of gamma oscillators the covariance matrix suffers from multicollinearity and has high 
condition number. However, ill-conditioning of the matrix will only surface during the 
inversion. Neither PCA dimensionality reduction nor the Varimax rotation will be 
affected by the high condition number of the matrix, because they do not include the 
covariance matrix inversion. The ill-conditioning of covariance can be reflected in the 
estimation of the sources for the smallest eigenvectors. In fact, one of the methods to 
regularize ill-conditioned matrices is based on truncation of smallest eigenvalues in SVD 
(e.g. P. C. Hansen: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects 
of Linear Inversion). Furthermore, we constrained the Varimax rotation to the subspace 



spanned by the first r principal components, where r is the number of eigenvalues larger 
than 10-4. Typically, r was slightly smaller than number of variables. Since our analysis 
uses only highest (typically less than 20) eigenvectors, they will not be affected by ill-
conditioned covariance matrix. 

In addition, we ran several tests on our data. First, we computed Kaiser-Meyer-Olkin 
Measure of Sampling Adequacy (Kaiser 1970, 1981), which indicates whether the data 
factors are well based on correlations and partial correlations between the variables. For 
all data sets, this statistic was above 0.85 (mean = 0.95, std = 0.02). Random data would 
correspond to 0.5 and values >0.8 indicate high suitability for factor analysis. It is clear 
from this analysis that ill-conditioning of the covariance matrix is in fact correlated with 
its suitability for factor analysis. Second, we split the data in two halves and compared 
the covariance matrices. To do so we computed single value decomposition and 
compared the eigenspectra of the covariance matrices for two halves of the data set. The 
relative difference between eigenvalues was 2%±1.8%, which indicates that we have 
sufficient amount of data to get consistent estimates of the covariance matrix. Analysis of 
eigenspectra differences showed consistent increase in the relative eigenvalue difference 
towards the end of the eigenspectra (i.e. for small eigenvalues), which further supports 
our contention that the variability/errors in the covariance matrix estimation corresponds 
to the small eigenvalues, and thus will not affect the PCA or Varimax rotation.  

We could not perform a full 10-fold cross-validation due to constraints of sample size, 
but we did perform the entire gFL analysis in first and second halves of all datasets. We 
found a close correspondence between the factor loading vectors obtained from full 
dataset and either half (Figure S9). The consistency between the two halves of data 
support our conclusions that (a) we had enough data for the proper estimation of the 
covariance matrix, (b) changes in covariance matrix (first and second half) did not affect 
the outcome of the analysis, and (c) spatial and frequency profiles were not random or 
trivial. Equally importantly, the degree of theta modulation of the gFL scores in the first 
and second halves of data was highly correlated for most of the gFLs, and even the 
preferred theta phase matched very closely (Figure S9). This means that each gFL score 
represents the time course of an independent process, which can be theta modulated to a 
certain degree and at a given preferred phase. This is not expected if any step of the 
analysis included random (noise, artifact) driven signal. Random noise would not give 
rise to (a) phase relationship to theta and (b) consistency between the two halves of the 
datasets. This analysis further argues against the pivotal role of volume-conduction, since 
volume conduction of hippocampal gamma to different cortical locations would result in 
similar theta modulation strength and phase. We believe this is a strong argument against 
the alternative that randomness and arbitrariness gave rise to the observed effect in our 
analyses, and suggests that gFL analysis does perform satisfactory demixing of individual 
gamma time courses. 

Does the Linear Nature of gFL Analysis Introduce Rather Than Alleviate the Problem 
of Volume Conduction? 
Volume conduction results in a linear mixing of different gamma sources. There is no 
ideal method to perfectly solve this problem. All existing methods are based on linear 



transformations. For example, current source density (CSD) method, widely used in 
neuroscience community, is a linear transformation of voltage values. CSD improves the 
localization of the current sinks and sources and follows from the Maxwell equations.  

First, our analysis was not affected by the imperfections of factor analysis (such as 
nonzero factor loading in hippocampus for the neocortical gFLs). For each gFL the 
factors score was calculated by projecting the data on the subspace formed by the sites 
from the upper 85% of the factor loading values and proximal to the center of gFL.  
Second, as the goal of linear factorization is to unmix linearly mixed sources. Even 
though all elements of loading matrix A are nonnegative, some elements of pseudo-
inverse A-1 are negative, and it is precisely the elements corresponding to gamma 
frequency bins derived from sites away from the gFL center or preferred frequency (e.g. 
hippocampal sites) that will be negative. Because of this negative contribution in the 
linear combination, it alleviates the problem of volume conduction, rather than 
emphasizes it. Third, the contribution of theta modulated hippocampal gamma to 
neocortical gamma was also ruled out by the partial coherence analysis. If linear 
contribution of gamma power at any frequency explained theta modulation of the gFL 
score, partializing the coherence by the power of hippocampal gamma should abolish the 
coherence. This was not the case. Fourth, the goal of gFL analysis is exploratory: due to 
volume-conduction (leading to linear mixing) and variable power of different gamma 
oscillators it is not possible to determine the location and frequency of gamma oscillators 
a priori. However, factor analysis allows one to uncover the spatial and frequency 
structure of the diverse arrays of gamma oscillators. This information can be further used 
to perform more direct analyses (e.g. LFP-LFP coherence) within the uncovered spatial 
and frequency loci.  

Does Current-Source Density Analysis or Local Referencing Eliminate Volume 
Conduction? 
The voltage produced by volume conducting currents decays inversely with distance 
from the point source. For a spatially distributed source the picture is more complex. 
Here we are dealing with multiple spatially segregated sources of various size and 
amplitude. Differential recordings simply measure the voltage difference and could yield 
significant values even in the complete absence of a local signal. The same problem 
applies to the combined reference electrode (eg. Nunez and Srinivasan, 2005). Using 
CSD analyses indeed appears ideal but this approach works well only with single dipoles 
or with dipoles with fixed phase delays. Attempts to localize neocortical gamma 
oscillations with CSD analysis routinely has not been successful despite several attempts 
in various cortical regions and species, at least not with 100 µm electrode spacings. 
Furthermore, our electrodes were not perpendicular to the layers in PFC and in several 
experiments only tetrodes were used. In addition, we suggest that irregular 
cytoarchitecture, multiple layers and the lower cell packing density of the neocortex 
make spatio-temporal summation of membrane currents of coherently active neurons in 
the extracellular space less effective than in the hippocampus. Thus one may not expect 
to observe spatially confined current sources/sinks associated with rhythmic intracortical 
network activity. In contrast, sleep spindles and evoked responses have sizable current 



sinks associated with synchronous activation of the thalamic projections to a confined 
layer IV neurons.  

Is the Space-Frequency Structure of gFLs Simply a Consequence of Particular Linear 
Decomposition? 
The conclusion that gamma oscillations are localized in space and frequency was first 
identified by the unit-unit and unit-LFP spectral analyses. It was confirmed by analysis of 
the gamma bursts isolated in space, frequency and time. These observations led us to the 
gFL analysis. For physically meaningful linear decomposition of the data some 
constraints needed to be imposed. Such factorization is the goal of the linear methods like 
ICA, nonnegative matrix factorization, factor analysis, etc. The constraint could be, for 
example, independence of the scores, which we cannot not assume since individual 
gamma oscillators are likely comodulated. Varimax rotation imposes a constraint of 
simplicity of the factors (Thorstone 1935, Kaiser 1974), which is related to sparseness, as 
discussed recently in the literature of blind source separation. This constraint is 
compatible with the spatial and frequency tuning of gamma oscillations observed by 
independent methods, as spelled out above. Moreover, nowhere in the method is the 
contiguity of large loading values in space and frequency imposed, yet such structure is 
discovered by the method – providing evidence that there is sufficient information in the 
covariance matrix. Critically, the spatial and frequency tuning of gFL factors closely 
matched our results of unit-LFP spectral analysis. The exact choice of rotation, even 
though it is data driven, is not unique, and particular choices we make could affect the 
outcome. One factor that does affect the outcome is the orthogonality of the eigenvectors 
emposed by the Varimax rotation. Therefore, on a subset of the data we performed the 
Promax rotation which relaxes the orthogonality. The majority of salient factors 
remained, though their numbers decreased. Thus, the observed segregation of gamma 
oscillators, by frequency in particular, could suffer from excessive splitting. Nevertheless, 
the orthogonality constraint in our analysis did not lead to false positives in subsequent 
analyses.   

Membrane Potential Analysis 
In the analysis of intracellular data, spikes were first removed. To achieve this, an average 
of the intracellular action potential was computed for each cell and the membrane 
potential was interpolated around all action potential peaks for the duration of the spike. 
Integrated gamma power was computed in the 25-55 Hz band as a smoothed rectified 
filtered Vm. Coherence between hippocampal LFP and the membrane potential or the 
integrated gamma power in the membrane potential was computed using 3.5 sec windows 
and 5 tapers. Significance of coherence was tested using jackknife resampling method 
(Thomson and Chave, 1991). This procedure is necessary in light of strong 
nonstationarity of power in the theta-band in the membrane potential signal. Coherence 
was considered significant at p<0.01. The phase shift between the intracellular signal and 
LFP in CA1 pyramidal layer was taken at the frequency of maximal coherence. Since in 
several cases LFP was recorded in the dentate gyrus (e.g. Figure 6C,D), we adjusted the 
phase shift values for these cells in the group display (Figure 6E) by the phase shift 
between the LFP in CA1 pyramidal layer and dentate gyrus (~175o;Isomura et al., 2006).  



 
Where does the large variability of the phase shifts between the LFP and Vm come from? 
There are several possible explanations for such variability in phase shift compared to the 
relatively well concentrated phase preference of suprathreshold firing of neocortical 
neurons in behaving animals (Figure 2 G,H). First, difference in the state of the animal in 
different experiments and depth of anesthesia could cause differential attenuation of 
synaptic transmission in hippocampo-cortical circuits resulting in differential phase shift. 
Second, due to spontaneous changes of the membrane potential over the course of a long 
recording session the degree as well as phase of locking of the membrane potential of 
neocortical neurons to hippocampal LFP can vary within and between animals. Third, 
due to the limited sample size of the intracellular experiments, a high degree of 
variability of preferred phases between Vm and LFP is expected, similar to the highly 
variable preferred phases of significantly theta modulated prefrontal and parietal neurons 
in REM sleep and waking (Figure 2). 
 
 



Supplemental Figures 
 

 
Figure S1. Detection of theta oscillations. Sample spectrograms (top) of LFP 
recorded in the CA1 pyramidal layer during REM sleep (A) and running on an 
elevated maze (B). Traces (bottom plots) display short epochs (dotted lines in 
spectrograms) of LFP from the CA1 pyramidal layer (top trace) and deep layers of 
the parietal cortex (bottom trace). Beginning and end of theta episode associated 
with exploration of the maze is marked by blue and red line, respectively. 
 



 
Figure S2. Hippocampal theta modulation of neocortical neurons (additional group 
statistics). (A,B) Cumulative density plots for Kuiper test V statistics in parietal (A) and 
prefrontal (PFC, B) cortex. Note that there is higher percentage of significantly modulated 
interneurons than pyramidal cells. The results from nonparametric test against any alternative 
therefore confirm results of Rayleigh statistics. (C-F), Cumulative density plots for ML 
estimates of concentration parameter k for cells with sample size > 1000 for pyramidal cells 
(red) and interneurons (blue) in parietal (C,E) and prefrontal (D,F) cortices during REM sleep 
(C,D) and awake running (E,F). Note that pyramidal cells invariably have stronger modulation 
than interneurons. This is in apparent contrast to the finding that a larger percentage of 
neocortical interneurons is significantly modulated. These observations may be explained by the 
different features of the two cell types. Interneurons have lower spiking threshold and are more 
electrotonically compact, thus their output can be shaped by variety of inputs. Pyramidal cells 



are constantly inhibited and only the strongly activated ones reach the spiking threshold. 
Therefore, if both cell types receive comparable periodic subthreshold inputs at theta frequency 
(signal), their output may reflect different magnitude of non-theta related inputs (noise). As a 
result, the signal-to-noise ratio of interneurons may be lower than that of pyramidal cells (lower 
k), yet the large number of spikes emitted by interneurons in a given recording session provides 
a higher statistical power when tested for theta modulation.  
 

 
Figure S3. Spectral analysis of theta modulation of neocortical neurons. (A-D), 
Examples of theta modulation of interneuron (A,C, blue) and pyramidal cell (B,D, red). 
(A,B), theta phase histograms (left) and autocorrelograms and spike waveshape (right). 
(C,D), Coherence (top) and phase spectra (bottom) between spike train of respective units 
and LFP in the neocortex during REM sleep (dark color) and slow waves sleep, SWS 
(light color). Note peaks in coherence at theta (likely hippocampal theta volume-
conducted to neocortex) and gamma frequency during REM sleep and spindle and lower 
gamma frequencies during SWS. Note linear phase shift with frequency for gamma range 
(in C, bottom). Such frequency-related phase shift is indicative of a fixed temporal 
relationship between the mechanisms responsible for gamma LFP and unit firing.  
 



 
Figure S4. Hippocampal theta oscillation modulates neocortical unit firing in mice. 
(A-D). Two putative interneurons significantly modulated by hippocampal theta. (A) 
Theta phase histograms of neural firing. (B) Auto-correlograms of respective neurons. 
(C) Power spectrum of spike trains of respective neurons. Note a distinct spectral peak at 
theta frequency for the top neuron. Red solid and dotted lines, mean and SD of the power 
expected for the Poisson process with the same mean rate. (D) Average filtered (800 Hz-5 
kHz) spike waveshapes of the respective neurons. (E) Group data of estimated preferred 
phase versus Rayleigh statistics (logZ) for all neurons (n=86) in 11 mice. 0, 360o, peak of 
theta in CA1 pyramidal layer. Dotted line indicates the significance threshold for p<0.01. 
(F) Cumulative density function of logZ statistic for putative pyramidal cells and 
interneurons in different states. (G) Cumulative density function of Kuiper V statistic (see 
Methods) for the same neurons.  
 



 
Figure S5. Dynamic gamma synchronization of neocortical neurons. (A-C), Example 
of a pair of putative pyramidal cells synchronized at ~50 Hz gamma frequency. (A) 
Power spectra of spike trains of the two pyramidal neurons. Inset, average filtered spike 
wave shapes. (B) Coherence (bottom) and phase shift (top) between spike trains of the 
two neurons. (C) Sample time stretch of sleep recording illustrating simultaneous time 
course of the LFP spectrum (top), spectrum of spike train Pyr 1 (middle) and coherence 
between the two neurons (bottom). Note transient nature of gamma synchronization. The 
figure illustrates that simple “overall” average spectral measures may not be not adequate 
to capture gamma frequency coupling between cell pairs or within ensembles of cells. (D-
E). Group summary of n=113 pairs of neurons, which were significantly coherent in the 
gamma frequency band. (D) Distribution of frequency of gamma synchronization. (E) 
Distribution of time lags between spike trains of gamma-coherent pairs of neurons. Time 
lags are inferred from the phase shift at the peak gamma frequency. 



 
Figure S6. Unit-triggered spectral analysis of gamma oscillations. (A-C), Examples of 
unit-LFP coherence analysis for different neurons from the same recording session. Top, 
unit-LFP coherence (gray shading, 95 percentile confidence bands), middle, phase 
spectrum (0, unit is locked to the peak of the LFP); bottom, anatomical map of spike-LFP 
coherence at maximal coherence frequency. Circle, putative location of the soma of the 
unit; cross, site used on the top plots. Note variability of localization in frequency and 



anatomical location of the maximal gamma coherence of the LFP to different neurons. 
(D,E), Spike-triggered average spectra for 2 example units. Left panels, deviation of the 
spike-triggered spectral power from baseline as a function of recording sites (only 
recording sites without artifacts are shown, y-axis) and frequency (x-axis). Middle panels, 
anatomical map of spike-triggered spectral power at maximal gamma frequency. Circle, 
putative cell body location of the unit; cross, site with maximal gamma power. 
Malfunctioning sites and sites  with  large amplitude unit spikes (gray) were excluded 
from the analysis to avoid contamination of gamma power by spike waveshape. Right 
panels, spike-triggered (time zero) spectral power at the site of maximal gamma power as 
a function of time lag from the spike. Note similarity in frequency and spatial profiles of 
the gamma range unit-LFP coherence and unit-triggered spectra. (F-I), Average 
normalized anatomical maps for four anatomical clusters of gamma power profiles 
triggered by different neurons. Each cluster consists of single unit-triggered profiles with 
the same or closely overlapping anatomical profile (D,E middle), regardless of gamma 
frequency. Black lines connect the center of mass of individual unit spike-triggered 
profiles to the location of the neuron. Note that neuron firing is occasionally best 
correlated with gamma power increase located as far as 1 mm from the neuron, although 
most long distance couplings occur in the same cortical layer (putative layer 5, F,G, E).  
 



 
Figure S7. Fine temporal structure of the gFL score signals . (A) Sample 
spectrograms of whitened LFP recorded in neocortical layer 5 (A, top) and hippocampal 
CA1 pyramidal layer (A, bottom). Dotted lines 1-6 mark time-frequency maxima of 
spectral power in one of the locations. (B) Time course of the 3 gFL scores for the same 
time period. Blue and green traces correspond to neocortical gFLs and red trace 
corresponds to hippocampal gFL, whose location-frequency profiles are shown in Figure 
5F, 5E and 5H, respectively. Note that times of the peaks of gFL scores closely match the 



time of the peaks in the spectrograms (dotted lines 1-3,5 and 6). (C) LFP trace recorded 
in the CA1 pyramidal layer illustrating ongoing theta oscillation. (D) Spatial profiles of 
spectral power at times and frequency bins marked 1-6 in (A). Anatomical layout of 
recording sites as in Figure 3A. Note that spatial profiles and frequencies at peaks 1-3, 5 
and 6 closely correspond to the location-frequency profiles associated with gFLs in 
Figure 5F, 5E and 5H, respectively. These observations illustrate that peaks in the gFL 
score exactly correspond to the peaks in spectral power localized in space and frequency 
according to the respective gFL profile. Note that event 6 corresponds to two gamma 
oscillations simultaneously present in the hippocampus and neocortex. 
 



 
Figure S8. LFP-LFP coherence analysis. (A) Example of LFP-LFP coherence between 
the center of gFL (top #2 Figure 5C and bottom #4 Figure 5D) and a nearby recording 
site for the entire session (green, baseline) and for spectral windows confined to the time 
of the peaks of the respective gFL scores (blue). (B) The difference between the two 
coherence spectra in A. Note that peak-confined coherence of gFL score has a frequency-
specific increase. (C,D) Same display as in Figure 6 J,K for the same gFLs as in A (#2 
C1,D1 and #4 C2,D2, respectively). (C1,2) Bottom, spatial map of average coherence 
between the LFP at the site (solid rectangle) in the center of the respective gFL and other 
sites at the peak frequency of the gFL profile. Top trace, example coherence for one site 



(open rectangle). Arrows, phase shift (zero at 3 o’clock). (D1,2) Top, coherence spectrum 
between theta LFP and gamma coherence between two neocortical selected sites (theta 
modulation of coherence). Integrated coherence within the frequency band of maximum 
coherence was first computed in sliding windows and the coherence between the 
resulting time series and hippocampal LFP was computed. Bottom, spatial map of theta 
modulation of coherence between the reference gFL center site and all other sites. Note 
that the phase shift between hippocampal LFP and neocortical gamma (arrows; 3 o’clock 
is zero) is different for low and high frequency gamma. This is in agreement with the gFL 
analysis (Figure 6I), which also showed that the fast gamma is biased to a later phase of 
theta than low frequency gamma. 
 

 
Figure S9. Stability of spatio-temporal features of neocortical gamma oscillations 
identified by gFL analysis. (A1-3) Spatial and frequency profiles of gFLs computed 
separately from the entire session (top) and first half of the session (bottom). Displays as 
in Figure 5. (B) Rank correlation matrix of aligned gFL factors computed from the first 
half and second halves of session. Note high values in the diagonal compared to off-
diagonal. (C) Group data showing the correlation between gFL vector match indexes for 
the first and second halves. The match index was computed as the ratio of the correlation 
of the gFL factor in the first (second) half to the closest gFL factor derived from the 
second half, normalized by the correlation to the next closest gFL from the entire section. 
Strong correlation between the two halves demonstrates the stability of space-frequency 
profiles of gamma oscillations and robustness of gFL analysis. (D) Rayleigh resultant 
length (circular measure of concentration of the gFL peaks within the theta cycle) during 
the first and second halves. Color indicates the phase shift between preferred phases of 



gFL peaks within the theta cycle for the two halves of the sessions. Note stability of the 
theta phase modulation of gFLs within session.  
 

 
Figure S10. Hippocampal theta phase modulation of hippocampal neurons. (A,B) 
Theta modulation of neocortical (A) and hippocampal neurons (n=349 neurons recorded 
in CA1, CA3 and dentate regions combined, B). Scatter plots (each dot represents a 
neuron) of sample resultant length versus sample size (log10 scale) with ML estimate of 
concentration coefficient k color coded. Note difference in color scales. Dots above the 
dotted line correspond to significantly (at p<0.01) theta modulated neurons. Note that 
density of dots in R/n-log10(n) space is virtually uniform in the hippocampus, in contrast  
to that observed in the neocortex. Most hippocampal cells are significantly modulated 
compared to the smaller percentage of neocortical cells. (C) Percent of neurons (y-axis) 
with logZ statistics greater than given (x-axis, y = P(X>x)). Note that putative 
interneurons are more likely to be significantly modulated than putative pyramidal cells. 
Blue, putative interneurons; red, putative pyramidal cells. Vertical dotted lines represent 
critical values of logZ for three levels of significance. (D) Percent of significantly 



modulated neurons with concentration coefficient k greater than given (x-axis, y = 
P(X>x)). Note that in contrast to the neocortex (Figure S2C-F), hippocampal interneurons 
are more strongly theta-modulated than pyramidal cells. This may be due to two factors. 
First, hippocampal pyramidal cells exhibit network dynamics that can accelerate relative 
to the mean field (Geisler et al., 2007), resulting in a decrease of their concentration 
coefficient. Second, afferents of most hippocampal interneurons are periodic at theta 
frequency.  
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