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Synthesis of 13C-[1,2,3,10,11]-CMP-β-NeuAc 

 
13C-CMP-NeuAc was made in a four-step synthesis process following published procedures.  N-hydroxysuccinimide and 
13C-acetyl chloride were combined to produce N-13C-[1,2]-acetoxy-succinimide, which was further reacted with D-
mannosamine to make N-13C[1,2]-acetyl-mannosamine (13C-ManNAc).1 The crude 13C-ManNAc was purified by ion 
exchange column (Dowex 50, H+ form) and flash chromatography (Iatrobeads, CHCl3, CH3OH and H2O 65:35:5).  The 
enzyme, NeuAc aldolase, was then used to react 13C-ManNAc with 13C-pyruvate to produce 13C-[1,2,3,10,11]-NeuAc.2
13C-[1,2,3,10,11]-CMP-β-NeuAc was then synthesized using the enzyme, CMP-NeuAc synthetase, and cytidine-5’-
triphosphophate to produce the final product.3 13C-CMP-NeuAc was further purified by size exclusion chromatography on 
Bio-Gel P2 column (extra fine, water, 4oC) before use.  The product was characterized by 1H NMR spectroscopy.  13C-
CMP-NeuAc was lyophilized and stored at -20 oC and has been observed to be stable under these conditions for up to two 
years. 
 
13C-CMP-NeuAc:  1H NMR (500 MHz, D2O): δ 7.96 (d, 1 H, J = 6.5 Hz, H6 cytosine), 6.12 (d, 1 H,  J = 6.0 Hz, H5 
cytosine), 5.99 (d, 1 H, J = 4.0 Hz, H1 ribose), 4.34 – 4.16 (m, 5 H, H3 ribose, H2 ribose, H5 ribose, H5 ribose, H4 ribose), 
4.13 (d, 1H, J = 11.5 Hz, H6 NeuAc), 4.07 (m, 1H, H4 NeuAc), 3.96 – 3.88 (m, 2 H, H5 NeuAc, H8 NeuAc), 3.86 (dd, 1 H, 
J = 11.5 Hz, J = 4.0 Hz, H9 NeuAc), 3.62 (dd, 1 H, J = 11.5 Hz, J = 6.5 Hz, H9 NeuAc), 3.44 (d, 1 H, J = 10.0 Hz, H7 
NeuAc), 2.62 (d, broad, 1H, J = 132.5 Hz, H3eq NeuAc), 2.15 (dd, 3H, J = 128.5 Hz, J = 6.0 Hz, NHCH3), 1.74 (d, broad, 
1H, J = 125.5 Hz, H3ax NeuAc). 

Structural characterization of ST6Gal-1 glycans 
Chemicals and Enzymes: Peptide N-glycosidase F and α-1,6-Mannosidase (Xanthomonas manihotis) were purchased from 
New England BioLabs.  Trypsin, α-2,3-Sialidase (Jack beans) and β-N-acetylhexosaminidase (Jack beans) were obtained 
from Sigma.  Other fine chemicals were from standard sources. 

Composition analysis by GC-MS: The neutral and amino sugar composition of ST6Gal-І was analyzed by GC-MS.  Methyl 
glycosides were prepared from a dried sample by methanolysis (mild acid treatment) in 1 M HCl in methanol at 80°C (18 
h), followed by N-acetylation with pyridine and acetic anhydride in methanol for detection of amino sugars.  The sample 
then was O-per-trimethylsilylated (TMS) with Tri-Sil (Pierce) at 80°C (0.5 h).  Inositol (~5 µg) was used as an internal 
standard.  These procedures were carried out as described previously.4

Release of N-linked glycans: An aliquot of the sample was dried in a Speed Vac (Savant SC 110) and re-dissolved in 
ammonium bicarbonate buffer (50 mM, pH 8.4) and heated at 100°C for 5 min to denature the glycoprotein prior to trypsin 
digestion (37oC, overnight).  A second enzyme, peptide N-glycosidase F (New England BioLabs) was added to the tryptic 
digest and incubated at 37oC overnight to release the N-linked glycans.  After enzymatic digestions, the sample was passed 
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through a C18 reversed phase cartridge.  The carbohydrate fraction was eluted with 5% acetic acid and then was dried by 
lyophilization.  A portion of N-linked glycans was permethylated and analyzed by MALDI-TOF-MS. 
 
Cleavage of N-linked glycans by Exoglycosidases: A portion of the N-linked glycans was dissolved in 0.05 M sodium 
citrate with 0.1 M NaCl buffer at pH 6.0 and treated with α-2,3-Sialidase from Jack beans (Sigma) overnight at 37°C.  The 
sample was dried in the speed vacuum centrifuge to change enzyme buffer.  β-N-acetylhexosaminidase (pH 5.0) from Jack 
beans (Sigma) was added to the portion of sialidase digested sample and incubated for 5 days at 37°C in 0.1 M citrate 
phosphate buffer at pH 5.0.  After enzyme digestion, the sample was dried and dissolved in 0.05 M sodium citrate buffer 
(pH 4.5).  Another exoglycosidase, α-1,6-mannosidase from Xanthomonas manihotis (New England BioLabs) was added to 
the sialidase and β-N-acetylhexosaminidase digested glycans.  After the enzymatic digestions, each portion of the samples 
was lyophilized and permethylated.  The carbohydrates were analyzed by MALDI-TOF-MS to monitor the enzyme 
digestions. 
 
Preparation of the O-permethylated carbohydrates:  The lyophilized carbohydrate fraction was dissolved in 
dimethylsulfoxide and then methylated with NaOH and methyl iodide as described by K. Aumula, et al.5

Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS): Profiling of N-linked 
glycans was performed initially using MALDI/TOF-MS (4700 Proteomics analyzer, Applied Biosystems).  Permethylated 
glycans were crystallized on a MALDI plate with 2, 3-dihydroxybenzoic acid (DHBA, 20mg/mL solution in 50% 
methanol: water) as a matrix.  All spectra were acquired in the reflector positive ion mode and averaged spectra of 50 laser 
shots with a 337 nm nitrogen laser.

Electrospray ionization – linear ion trap mass spectrometry (ESI-LCQ/MSn):  The structure of the oligosaccharides 
detected by MALDI-TOF MS was confirmed by LCQ-ESI MS (Thermo Finnigan) spectrometry, in the positive ion mode.  
The permethylated glycans were dried, re-dissolved in 50% methanol containing 1 mM NaOH, and infused directly into the 
LCQ-MS instrument at a constant flow rate of 1µL/min via a syringe pump (Harvard Apparatus) and sprayed at 3.5 kV.  
The capillary temperature was set to 200oC.  A normalized collision energy of 35 and an isolation mass window of 2 Da 
were applied to obtain MSn described in detail by A. Lapadula, et al.6

Glycosyl composition Analysis: Glycosyl composition analysis of the released N-glycans from purified ST6Gal-1 
glycoprotein by GC-MS showed fucose, galactose, mannose, N-acetylglucosamine, N-acetylneuraminic acid, and N-
acetylgalactosamine.  The glycosyl composition was performed by GC-MS in order to unambiguously determine if N-
acetylgalactosamine was present in addition to the N-acetylglucosamine that was expected on the N-glycans.   

MALDI-MS and ESI-MS/MS analysis of permethylated released oligosaccharides:  The released and permethylated N-
glycans from ST6Gal-1 were also analyzed by MALDI-MS (Figure 1A).  More than ten oligosaccharides were detected in 
the spectrum, which consisted of various fucosylated and/or sialylated complex type biantennary and minor triantennary N-
glycan structures.  The structure of major glycans after sialidase digestion was confirmed by performing tandem mass 
spectrometry using ESI-MS/MS on the molecular ions and a series of exoglycosidase digestions.  The main ions observed 
were m/z 3007.6 and 2792.5, which corresponded to compositions of biantennary structures Hex4HexNAc5NeuAc2Fuc1 and 
Hex5HexNAc4NeuAc2, respectively.  The structure of the ion m/z 2792.5 was confirmed to be a non-fucosylated 
disialylated biantennary glycan by exoglycosidase digestions and subsequent ESI-MS/MS analysis of exoglycosidase 
products (see Table 1 and Figure 1).  For the ion m/z 3007.6, the presence of N-acetylgalactosamine in the glycosyl 
composition data by GC-MS and the Hex4HexNAc5NeuAc2Fuc1 composition with five hexosamine residues in the MALDI-
MS suggested a possible sialyl LacdiNAc sequence (Sia -GalNAcß1-4GlcNAc-R) at the non-reducing end.  Figure 2 shows 
the ESI-MS/MS data of the parent ion, m/z 1154 (D.C. of m/z 2285) from the released N-glycans after α 2-3 Sialidase 
digestion.  The presence of the fragment ion m/z 527.2 showing a HexNAc2

+ ion and the y and b fragment ions from the 
m/z 1154 ion confirmed the presence of the HexNAc2 residue at one of the biantennary arms.  The presence of sialyl 
LacdiNac (Sia2-6GalNAcβ1-4GlcNAcβ1-R) has previously been described by T. Ohkura et al.7

Exoglycosidase digestions: In order to confirm the glycan structures and determine the position of the LacdiNAc sequences 
(GalNAcß1-4GlcNAc) on the main glycan, the released N-glycans from ST6Gal-1 were subjected to a series of 
exoglycosidase digestions.  Figure 1B shows the MALDI-MS spectrum of permethylated released N-glycans after α 2-3 
sialidase treatment.  The spectrum is greatly simplified compared to the intact glycan profile.  The major ion m/z 2285 
confirms loss of two sialic acids from the original ion m/z 3007 and corresponds to the Hex4HexNAc5Fuc1 structure.

The MALDI-MS spectrum of the released N-glycans after α 2-3 sialidase followed by β-N-hexosaminidase digestion is 
shown in Figure 1C.  The β-N-hexosaminidase digestion, which should only affect the oligosaccharides containing the 
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GalNAc-GlcNAc structures, resulted in ions m/z 1621 and 1795 as products after removal of GalNAc-GlcNAc from their 
respective original ions, m/z 2111 and 2285.  As expected, the ions m/z 2070, 2244, and 2519, which contained galactose at 
the non-reducing end, stayed unchanged after the β-N-hexosaminidase digestion. 
 
In order to determine which arm the GalNAcß1-4GlcNAc moiety was attached in the biantennary structure, the product of 
the β-N-hexosaminidase digestion was subjected to α 1-6 mannosidase digestion.  If the GalNAc-GlcNAc was originally 
attached through the 6-linked mannose then removal of HexNAc2 after β-N-hexosaminidase and subsequent digestion with 
α 1-6 mannosidase should result in loss of one mannose residue and detection of the ions m/z 1417 and 1591.  Figure 1D 
shows the MALDI-MS spectrum of the product of the above exoglycosidases after α 1-6 mannosidase digestion.  The lack 
of the ions at m/z 1417 and 1591 suggests that the GalNAc-GlcNAc is probably not on the α 1,6 arm and is possibly 
attached through the α1, 3- mannose residue.  However, more experiments with will be needed to confirm this.  
 
Conclusion: In conclusion, the major N-glycan structure on the ST6Gal-1 glycoprotein was determined to be a fucosylated 
biantennary oligosaccharide with a Sia2-3/6GalNAcβ1-4GlcNAc attached through the α1, 3-mannose residue.  The other 
main N-glycan structure was a disialylated biantennary glycan.  
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Figure 1.  MALDI-TOF MS of the major released N-linked glycans from ST6Gal-l and of the products of exoglycosidase 
digests.  (A) Intact glycans released from ST6Gal-l with PNGase F were permethylated and analyzed.  Structural 
assignments are based on fragmentation (MS/MS) by ESI-LCQ (data are not presented).  (B) Incubation with α 2-3 
sialidase produced intact biantennary structures that were devoid of sialic acids.  (C) The full MALDI-MS spectrum of 
ST6Gal-l permethylated N-liked glycans after α 2-3 sialidase and β-N-hexosaminidase digestions.  (D) The full MALDI-
MS spectrum of ST6Gal-l permethylated N-liked glycans after α 2-3 sialidase, β-N-hexosaminidase, and α 1-6 mannosidase 
digestions. 
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Figure 2.  The ESI-MS/MS spectrum of permethylated N-glycans from ST6Gal-І parent ion, m/z 1154 (doubly charged of 
m/z 2285) after α 2-3 Sialidase treatment. 
 

Table 1.  The molecular ions observed by MALDI-MS of the released and permethylated N-glycans after α-2,3-sialidase 
digestions and the subsequent ESI-MS/MS fragments detected.   
 

Observed Mass 
Single Charge Double Charge 

Composition Proposed structure 

2070.3 1046.7 HEX5HEXNAC4

D.C. 814.9 
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2111.3 1067.5 HEX4HEXNAC5

2285.4 1154.1 HEX4DHEX1HEXNAC5

1794.9 909.2 HEX4DHEX1HEXNAC3

1620.8 822.2 HEX4HEXNAC3

Chemical shifts for observed NeuAc species 
Compound H3eq (ppm) H3ax (ppm) C3 (ppm) 
α-NeuAc 2.73 1.63 43.4 
β-NeuAc 2.21 1.84 42.1 

CMP-β-NeuAc 2.49 1.66 43.9 
α-NeuAc bound to ST6Gal-I 2.68 1.72 42.8 

Conditions:  10 mM potassium phosphate, 200 mM NaCl, pH 6.5, D2O, 37ºC 
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