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Equivalence of different test statistics

In this section we establish the equivalence of several test statistics (r2, t2,
F , and LR) commonly used to test the associations between a binary vector,
resulting from a homozygous SNP, and a real-valued vector, resulting from
measurements of gene expression. In particular, we note that

F = t2 =
r2

1− r2
(n− 2) and LR = − log(1− r2)

Notation

Let S = (0, 0, ..., 0, 1, 1, ..., 1) be a binary vector of length n, with n0 zeros
and n1 ones, and let G = (g1, g2, ..., gn) be an n-vector with real-valued com-
ponents. All four statistics we will consider are scale invariant, so without
∗equally contributing coauthors
†to whom correspondence should be addressed
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loss of generality we can assume that G is standardized:

n∑
i=1

gi = 0 and
n∑

i=1

g2
i = 1.

Denote by ḡ0 and ḡ1 the average of G over those samples where S equal to
0 and 1, respectively:

ḡ0 =
n0∑
i=1

gi/n0 and ḡ1 =
n∑

i=n0+1

gi/n1.

It follows from
∑n

i=1 gi = 0 that n0ḡ0 = −n1ḡ1, and in particular, n2
0ḡ

2
0 =

n2
1ḡ

2
1.

Correlation

The correlation of G and S is defined as

r =
cov(G,S)√

var(S)var(G)
.

The numerator is equal to

cov(G,S) =
1

n− 1

n∑
i=1

sigi =
1

n− 1

∑
si=1

gi = ḡ1n1/(n− 1).

The first term in the denominator simplifies to

var(S) =
1

n− 1

[∑
s2i −

1
n

(
∑

si)2
]

=
1

n− 1

[
n1 −

n2
1

n

]
=
n1(n− n1)
(n− 1)n

=
n0n1

(n− 1)n
,

and the second is equal to

var(G) =
1

n− 1

[∑
g2
i −

1
n

(
∑

gi)2
]

=
1

n− 1
.

Combining the previous three expressions, we find that

r =
ḡ1n1√
n0n1/n

= ḡ1

√
n1

n0
n.
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T-statistic

The t-statistic for difference between ḡ0 and ḡ1 is defined as

t =
ḡ1 − ḡ0

σ̂
√

1
n1

+ 1
n0

,

where the estimate of the noise variance is

σ̂2 =
1

n− 2

(
n0∑
i=1

(gi − ḡ0)2 +
n∑

i=n0+1

(gi − ḡ1)2
)

Simplifying σ̂2 yields

σ̂2 =
1

n− 2

(
n∑

i=1

g2
i − n0ḡ

2
0 − n1ḡ

2
1

)

It then follows from the equations
∑n

i=1 g
2
i = 1 and n2

0ḡ
2
0 = n2

1ḡ
2
1 that

σ̂2 =
1

n− 2

(
1− n1(n0 + n1)

n0
ḡ2
1

)
=

1
n− 2

(
1− ḡ2

1

n1

n0
n

)
=

1− r2

n− 2

Note that √
1
n1

+
1
n0

=
√
n0 + n1

n0n1
=
√

n

n0n1

and that the numerator of t can be rewritten as

ḡ1 − ḡ0 = (1 +
n1

n0
)ḡ1 =

n0 + n1

n0
ḡ1 =

n

n0
ḡ1

Combining the analyses above we find that

t =
ḡ1 − ḡ0

σ̂
√

1
n1

+ 1
n0

=
nḡ1/n0√

n
n0n1

1−r2

(n−2)

=
ḡ1
√
nn1/n0

1− r2
√
n− 2 =

r

1− r2
√
n− 2

This is the well known formula for t-statistic for a correlation (under as-
sumption of normality).
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ANOVA F-statistic

The ANOVA F-statistic measures the fraction of variation explained by
assuming different averages of G across samples where S equal to 0 and 1,

F = (n− 2)
SSB

SSW

where

SSB = n0ḡ
2
0 + n1g

2
1

and

SSW =
n0∑
i=1

(gi − ḡ0)2 +
n∑

i=n0+1

(gi − ḡ1)2

Applying the formula derived for t-statistic σ̂2 = 1−r2

n−2 we find that

SSW = (n− 2)σ̂2 = 1− r2

It follows from SST =
∑n

i=1 g
2
i = 1 and SST = SSB + SSW that

SSB = SST − SSW = r2

Combining the formulas for SSB and SSW yields the equivalence of F
and t statistics

F = (n− 2)
r2

1− r2
= t2

Likelihood ratio test

The likelihood ratio test is defined as doubled difference between data like-
lihoods under hull and alternative hypotheses

LR = 2[l1(g, s)− l0(g)]

The null model assumes the same normal distribution for samples gi

whether si = 0 or si = 1. The likelihood under null model is

l0(g) = −1
2

log 2π − 1
2

log σ̂2
0 −

∑n
i=1(gi − ḡ)2

2σ̂2
0
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where

σ̂2
0 =

n∑
i=1

(gi − ḡ)2/n

The alternative model allows the mean of gi to depend on whether si = 0
or si = 1. The likelihood under alternative model is

l1(g, s) = −1
2

log 2π − 1
2

log σ̂2
1 −

∑n0
i=1(gi − ḡ0)2 +

∑n
i=n0+1(gi − ḡ1)2

2σ̂2
1

where

σ̂2
1 =

[
n0∑
i=1

(gi − ḡ0)2 +
n∑

i=n0+1

(gi − ḡ1)2
]
/n

We can simplify the estimates of variance

σ̂2
0 =

n∑
i=1

(gi − ḡ)2/n = 1/n

σ̂2
1 =

[
n0∑
i=1

(gi − ḡ0)2 +
n∑

i=n0+1

(gi − ḡ1)2
]
/n = SSW/n = (1− r2)/n

We can simplify the likelihoods using the formulas for σ̂2
0 and σ̂2

1

l0(g) = −1
2

log 2π − 1
2

log[1/n]− n

2

l1(g, s) = −1
2

log 2π − 1
2

log[(1− r2)/n]− n

2
This leads to the formula for the likelihood ratio test

LR = − log(1− r2)

Summary

We can conclude that all four test statistics (r2, t2, F , and LR) are monotone
functions of each other and thus are equivalent:

F = t2 =
r2

1− r2
(n− 2) and LR = − log(1− r2)
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