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Supplementary Material 

NC competes with Mg2+ and Na+ for NA binding as an effectively trivalent cation. 

 Non-specific electrostatic binding between NC and NA plays a large role in NC-

facilitated hairpin annealing. This mode of binding assumes that NC is a simple cation 

with the effective charge z, (z-valent), that binds polyanionic NA to screen its charge  1-5. 

When several cationic species are present in solution, they compete for NA binding 4-7. 

The NC binding isotherm is expected to have a form that is similar to the McGhee and 

Von Hippel binding isotherm with ligand site exclusion 6; 7: 
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Here, B is a factor related to the non-electrostatic component of free energy of NC/NA 

binding, µ: 

     B = e!µ /RT ,     (A3) 

where R is the molar gas constant and T is temperature in K. The effective charge of NC, 

z, can be determined experimentally as the log-log slope of the dissociation constant of 

NC in Na+: 
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Based on previous NC binding studies, the value for z is 3 ± 0.5 8-11. Thus, NC behaves as 

a trivalent cation, and its dissociation constant is predicted to be ~[Na]3  or ~[Mg]3/2 , i.e., 

3 Na+ or 3/2 Mg2+ cations are released from NA upon NC binding. 

 To estimate !
NC

 at any [Mg2+] and [Na+] using equation (A1), B must be 

determined. Using a fluorescence polarization binding assay performed in 50 mM NaCl, 

the Kd for NC binding to a 20-nt ssDNA was determined to be ~80 nM 12. According to 

the first equation in (A2), this corresponds to a value of B (~1600). A somewhat higher 

B=4000 value can be estimated based on other binding measurements 10. According to 

equation (A3) B = 4000 corresponds to 

µ = !RT " ln B( ) = !(8.3 ± 0.2)RT = !(5 ± 0.2)kcal / mol . The latter is in good agreement 

with the estimate of -5.2 kcal/mol obtained from direct binding studies by extrapolating 

measured Kd([Na]) to 1 M salt when all non-electrostatic contributions to binding are 

expected to vanish10. This value is also consistent with the difference in free energy of 

binding to NA of WT and zinc-less NC 10. The later observation supports the hypothesis 

that the non-electrostatic contribution to NC/NA binding comes from stacking of the 

aromatic residues of NC’s zinc fingers with unpaired NA bases 11; 13-16.  

 

 

HIV-1 NC-induced NA/NA attraction is electrostatic in nature. 

 The exact nature of NA self-attraction induced by NC is still unclear. It was 

suggested to be a consequence of attractive interactions between NA-bound NC 

proteins17. However, direct binding data suggest that NC binding to NA is non-

cooperative 10; 18, and attractive interactions between the highly cationic NC molecules 
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have not been observed, either when bound to NA or in solution.  An alternative 

explanation of NC-induced NA aggregation emphasizes the cationic nature of NC and its 

predominantly electrostatic binding mode to NA. It is well-known that multivalent 

cations with charge >2 can produce nonspecific NA aggregation 19-23 by a purely 

electrostatic mechanism 24-30. Therefore, as an effectively trivalent cation, NC3+ is 

expected to be similar to spermidine3+ or cobalt hexamine3+ in its NA aggregating 

properties. These polyvalent cations are known to aggregate single, double or triple 

stranded nucleic acids 31-35. The attraction between nucleic acid molecules in this model 

requires nearly saturated multivalent cation binding 19, and is proportional to the total 

number of charges, i.e., number of nucleotides in each molecule. Therefore, the attraction 

between NA molecules is expected to depend on the fraction of nucleic acid saturation 

with NC, !
NC

, and to be weaker for shorter NA oligomers. The accuracy of our 

aggregation measurements was insufficient to observe the difference in !
NC

required for 

aggregation of TAR vs mini-TAR molecules. In both cases the fractional hairpin 

aggregation, fa, was close to the fractional NC binding, !
NC

. This suggests that an almost 

complete NA saturation with NC is required for NA aggregation, consistent with its 

electrostatic nature. 

The fact that even the short 27-nt mini-TAR hairpins are aggregated by saturated 

NC binding at total hairpin concentration of ~100 nM, but not at lower concentrations, 

can be used to estimate the attractive energy between NA molecules induced upon NC 

binding:  
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Here, N is the number of nt per NA molecule, and ε is the attractive free energy per nt. 

The right hand side of equation (B1) describes the NA’s free energy change due to an 

entropy loss upon going from the bulk solution at concentration C to an aggregated 

maximal density state, where the concentration equals the reciprocal NA volume, N/C0. 

Here C0 is the reciprocal volume of a single nucleotide,C
0
= 1 /!r2b " 3M  (r~1 nm and 

b~0.17 nm are the ss NA radius and length per nt, respectively). Substituting the numbers 

typical for our experiment into equation (B1), i.e., C~100 nM and N=27, an estimate of 

the attractive free energy per nt can be obtained: ε ≈ 0.4 RT ≈ 0.3 kcal/mol.  This estimate 

is significantly higher than previously estimated values of 0.02 RT, 0.08 RT and 0.07RT 

for dsDNA aggregation by sperimdine3+, cobalt hexamine3+ and spermine4+, respectively 

25. Nevertheless, the estimated ε value for NC is still within the range that is reasonable 

for electrostatic interactions between trivalent cations and NA phosphate charges 24; 25; 27. 

The stronger NC-induced NA attraction compared to that induced by polyamines with 

approximately the same effective charge (z~3) may be a result of a more compact charge 

distribution on NC in its N-terminal domain. It could also be a result of NC’s stronger 

binding to NA due to non-electrostatic interactions via the zinc-finger domains. 
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Figure S1 Fraction of RNA aggregated (ƒa) measured by sedimentation (data points), and 

fraction of NC bound (ΘNC) calculated according to eqs. (A1-A3) (solid lines). 

Experiments were conducted in the presence of 5 mM Mg2+ as a function of various 

concentrations of NC (panel a); and in the presence of 5 µM NC as a function various 

concentrations of Na+ or Mg2+ (panel b). Circles and squares correspond to mini-TAR 

and full-length TAR RNA, respectively.  
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