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The Expected Value of the Sample Correlation Coefficient Bρ  between Two Independent 
Bootstrap Variance Correlations and Correlation Coefficient Between Bootstrap Variance and 
Distribution Variance 

Introduction 
In this section, we derive the equations for the sample correlation coefficient of bootstrap variance 

( Bρ ) and correlation coefficient between bootstrap variance and the variance of the distribution ( γρ ).  
In order to have a workable paradigm, we will use a model case of a set of one dimensional random 
vectors filled with independent random variables, and we will consider averaging of the vectors instead 
of performing the three dimensional reconstruction.  We will relate these results to the case of cryo-EM 
structure reconstruction. 

Notation 
      For a one-dimensional vector y , ky  is its k-th element.  The average of elements of y  is denoted: 
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(again, it can be referred to as between-pixels variance).  By ( )E ⋅  we denote the expected value of a 
random variable; for random vectors, the operation is understood component-wise and results in a 
vector.  By ( )V ⋅  we denote the variance of a random variable and by ( )Cov ,⋅ ⋅  the co-variance of two 
random variables. 

Definition of the problem for the model case 
      Our sample set comprises N one-dimensional vectors { }1 2, , , ,N=Ψ Ψ Ψ Ψ…  each one-dimensional 
vector has K elements.  By ikΨ  we denote the k-th element of the i-th vector in Ψ .  In our model, the 
elements in Ψ  are independent random variables with zero expected values.  Also, we assume that 
for each K, the elements 1 2, , ,k k NkΨ Ψ Ψ"  are identically distributed.  We define 2km  and 4km as the 2nd 
and 4th moment of the distribution of the elements 1 2, , ,k k NkΨ Ψ Ψ" : 
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It should be noted here that we do not need assumption for the 3rd moments since in our derivation 
they are always multiplied by the 1st moments that are equal to zero. 

Therefore, the distribution variances in our model are equal to: 

 ( ) ( )2
2V , 1, ,jk k km j NσΨ = = = " . (S.2) 

We will use a convention here by which a vector of variances (or sample variances) is denoted by 
corresponding bold face symbol, such as ( )2 2 2

1 , , Kσ σ=σ "  or ( )2 2 2
1 , , KS S=S " . 

During the bootstrap calculation, the sample set Ψ  is resampled with replacement to generate a 
new set called a bootstrap sample {Shao, 1995 #9989}.  For each bootstrap sample, its sample 
average is calculated component-wise.  The procedure is applied repeatedly and yields B bootstrap 
sample averages, which in turn are used to calculate the bootstrap sample variance ( *2

kS  for each 
pixel k, where 1,2,...,k K= ).  We prove in Section B of this Supplement that the expected value, 
variance and co-variance of *2

kS  are equal to: 
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*2
1kS  and *2

2kS  are bootstrap variances obtained from two independent bootstrap calculations using the 
same sample set. 

Derivation of ( )E Bρ  and ( )E rρ  for the model case 

      

The sample correlation coefficient of bootstrap variance ( Bρ ) is defined based on the following 
setup.  After we obtained the B bootstrap sample averages, we randomly split them into two equally 
sized groups, and for each group we calculate the bootstrap variance.  The two obtained bootstrap 
variances are denoted as *2

oS  and *2
eS , and the sample correlation coefficient of bootstrap variance 

( Bρ ) is calculated as the correlation coefficient between vectors *2
oS  and *2

eS :
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while ( )2 *2
oS S  is the sample variance of the elements of *2

oS , and ( )2 *2
eS S  is the sample variance of 

the elements of *2
eS . 

The expected value of Bρ  is approximated by: 
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The approximation has later been verified by a numerical simulation, see Section D, and proved to be 
valid for 4B N≥ . 

The derivation of (S.5) is as follows.  From the definition, we have: 
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Combining (S.3) and (S.6), we have: 
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which implies: 
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while ( )2 2S σ  is the sample variance of the elements of 2σ . 

We define 4m  and 2
2m  as: 
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Then (S.8) can be rewritten as: 
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In order to evaluate the term ( ) ( )2 *2 2 *2E o eS S⎡ ⎤
⎣ ⎦S S  we note that ( )2 *2

oS S  and ( )2 *2
eS S  are correlated; 

however, the co-variance between them is of the order 5N −  and is negligible (not shown).  Therefore,
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The relation has later been verified by a numerical simulation, see Section D for details. 

From the definition, we have: 
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while: 
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Combining (S.3), (S.9), (S.12) and (S.13), we obtain: 
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Combining (S.5), (S.10), (S.12) and (S.14), we obtain: 
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which concludes the derivation of ( )E Bρ .  It should be also noted here that 2
4 2m m>  as 2

4 2k km m≥  
holds for any distribution, as a special case of Jensen’s inequality. 

Using the same procedure, we can derive the equation for the expected value of sample 
correlation coefficient ( γρ ) between bootstrap variance and the distribution variance as: 
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In the case of the bootstrap technique applied to the evaluation of variance in three-dimensional 
reconstruction from projections, the distribution variance 2σ  is called the structure variance and we 
approximate ( )2 2S σ  by ( )2 2

StructS σ .  The latter is calculated as a among-voxels variance of the 
structure variance map. 

The Expected Value, Variance and Covariance of the Bootstrap Sample Variance 

The definition of the bootstrap variance 
      For the purpose of this section we assume that the sample set Ψ  comprises N independent 
random variables ( )1 2, , NΨ Ψ Ψ""  with zero expectation originated from the same distribution. It 
should be noted here that we omitted the subscript k which stands for the pixel number (c.f. (S.1) and 
(S.17)). The results derived in this section hold for any single pixel. We define 2m  and 4m  as the 
second and the fourth moments of the distribution, i.e.: 
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It should also be noted that we do not have assumptions on the 3rd moment because in our derivation 
it is always multiplied by the 1st moment that is equal to zero. 

During the bootstrap calculation, the sample set Ψ  is resampled with replacement and yields a new 
set called a bootstrap sample.  The average of this bootstrap sample is called bootstrap sample 
average ( )*Ψ .  We introduce auxiliary random variables ( )1 2, ,..., Ne e e , such that *Ψ can be expressed 
as: 
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The bootstrap step is repeated B times and yields B bootstrap sample averages ( )* * *
1 2, , , BΨ Ψ Ψ"" , 

and the bootstrap variance *2S  is calculated among these bootstrap sample averages as: 
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The expected value of the bootstrap variance  
The expected value of the bootstrap variance *2S (S.19) is evaluated as: 
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Considering that all the bootstrap sample averages are identically distributed, i.e., ( ) ( )*2 *2E Ei jΨ = Ψ
 

and ( ) ( )* * * *E Ei j k lΨ Ψ = Ψ Ψ , (S.20) can be rewritten as: 

  ( ) ( ) ( )*2 *2 * *E E E .i i jS = Ψ − Ψ Ψ  (S.21) 
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( )* *
i jE Ψ Ψ  is evaluated as: 
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We prove in section C that ( )2
ijE e , ( )ikE e  and ( )jlE e  are equal to: 
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Combining (S.17), (S.22), and (S.24), we arrive at: 
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Combining (S.17), (S.23) and (S.24),  we arrive at: 
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Combining (S.21), (S.25) and (S.26), we arrive at the final equation of the expected value of bootstrap 
variance: 
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which concludes the derivation of the expected value of the bootstrap variance. 

The variance of the bootstrap variance 
Now we begin derivation of the variance of the bootstrap variance.  From the definition, it holds: 

 ( ) ( ) ( )2*2 *4 *2V E E .S S S= −  (S.28) 



In equation (S.28), ( )*2E S  is given by (S.27) and thus we only need to derive ( )*4E S .  The latter can 
be split into three parts: 
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The first part in (S.29) is evaluated as: 
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The second part in (S.29) is equal to: 
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The third part in (S.29) is equal to: 
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We define intermediate variables 1L  through 5L  as: 
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Combining (S.29), (S.30), (S.31), (S.32) and (S.33), we obtain: 
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Combining (S.27), (S.28) and (S.34), we arrive at: 

 
( )

( )
( )

*2

2
2 1 2 3 4 5 2 4 5

2 4 5 24

V

1 4 8 4 2 4 22 .
1

S

N L L L L L L L LL L L m
B B BN

=

− − − + − − +
− + − + +

−  
(S.35)  



The 1 2 5, , ,L L L"  are derived as: 
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We proved in Section C that ( )4E ije , ( )2 2E ij ike e , ( )3E ije , and ( )2E ij ike e  are equal to: 
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Combining (S.35), (S.36), and (S.37), we arrive at the final equation for the variance of bootstrap 
variance: 
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The higher order terms in (S.38) can be neglected in practice, and therefore we have: 
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which concludes the derivation of the variance of the bootstrap variance. 

Covariance of bootstrap variance 
      The co-variance of bootstrap variances is defined as: 
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while *2
iS  and *2

jS  are bootstrap variances obtained from two independent bootstrap calculations 
using the same sample set. 

      We know that: 
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Thus, the only unknown part in (S.41) is ( )*2 *2
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For the first part of ( )*2 *2
i jE S S , we have: 
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For the second part of ( )*2 *2
i jE S S , we have: 
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For the third part in ( )*2 *2
i jE S S , we have: 
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Combining (S.42), (S.43), (S.44) and (S.45), we arrive at: 
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Finally, combining (S.36), (S.40) and (S.46), we arrive at the equation for the co-variance of the 
bootstrap variance: 
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The higher order terms in (S.47) are negligible, and thus we have: 
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which concludes the derivation of the co-variance of the bootstrap variance.  

    Finally we note that the final results of this section (S.27), (S.39) and (S.48) have been verified by a 
numerical simulation, see Section D for details. 

Additional Relations for Auxiliary Random Variables ( )1 2, ,..., Ne e e  
      The set of auxiliary random variables ( )1 2, ,..., Ne e e  are introduced such that the bootstrap sample 
average *Ψ  can be expressed as: 

 * 1 .
N

i i
i

e
N

Ψ = Ψ∑  (S.49) 

      The random variables ( )1 2 1, ,..., Ne e e −  are distributed multinomially with parameters 

1 2 1
1... Np p p
N−= = = = , i.e., ( )1 2 1

1 1, ,..., , , ;Ne e e M N
N N−

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ " , so that: 

 ( )
1 1

1 1 1 1
1 1

! 1P , ,
! !

Nn n

N N
N

Ne n e n
n n N

−+ +

− −
−

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

"

"
"

 (S.50) 

while 1 10, , 0Nn n −≥ ≥"  and 1 1Nn n N−+ + ≤" , whereas ( )1 1N Ne N e e −= − + +" . 



Based on the known properties of the multinomial distribution in equation (S.50), we can determine the 
probability of ( ),  0ie k k N= ≤ ≤  to be: 

 ( ) ( )
( )1!P .

! !

N k

i N

NNe k
k N k N

−−
= =

−
 (S.51) 

The expected value of ie  is equal to: 
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( ) ( ) ( )1
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E E E 1
i i

N i N

e p N i N

e N e e −

= = = −
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"

"
  (S.52) 

( )2E ie , ( )3E ie , and ( )4E ie  are evaluated using the similar method as follows:  

( )

( ) ( )( ) ( )
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1 2 3 1
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i

Ne
N

N N N
e

NN
N N N N N N

e
NN N

−=

− − −
= + +

− − − − − −
= + + +

 (S.53) 

      It should be noted here that ie and je are not independent, and the combined probability of ie k=   

and je l=  while ( )0 ,k l N≤ ≤  is equal to: 

 ( ) ( )
( )2!P , .

! ! !
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i j N

NNe k e l
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In addition, 
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 (S.55) 

The relations (S.49)-(S.55) were used in the Section B. 

Numerical Simulations to Verify the Results 
     The following numerical simulations have been performed to verify some of the obtained equations. 

 

Simulations to verify (S.5): The approximation of sample correlation coefficient of bootstrap 
variances 

    The procedure to calculate the sample correlation coefficient of bootstrap variance ( Bρ ) has been 
described in Section A.  Here we set K=20, tried different combination of N and B.  The procedure has 
been repeated 10,000 times.  By ⋅  we denote the average value over the 10,000 trails. 

N B Bρ  *2 *2 *2 *2
K

ko ke o e
k

S S KS S−∑ ( ) ( )2 *2 2 *2
o eS SS S

( ) ( ) ( )

*2 *2 *2 *2

2 *2 2 *21

K

ko ke o e
k

o e

S S KS S

K S S

−

−

∑

S S

100 20 0.7044 31.4328 6.1700 0.6660



150 20 0.7087 13.8413 1.1830 0.6697

200 20 0.7088 7.8984 0.3795 0.6747

100 50 0.8646 31.7627 3.8388 0.8468

150 50 0.8649 13.9927 0.7554 0.8573

200 50 0.8618 7.8786 0.2414 0.8439

100 100 0.9291 32.0549 3.3619 0.9201

150 100 0.9286 14.0818 0.6501 0.9192

200 100 0.9270 7.8619 0.2031 0.9182

100 10000 0.9992 32.2604 2.8879 0.9991

The simulations indicate that a bootstrap sample of B=50 is sufficient for the approximate Bρ  to be 
satisfactory. 

Simulations to verify the correlation between *2
oS  and *2

eS  

    Here we use a sample set with K=20, B=10,000 and N=100, 150, 200.  The values reported are 
average values over the 1000 trails. 

N ( ) ( )2 *2 2 *2
o eS SS S  ( ) ( )2 *2 2 *2

o eS SS S ( )*2 *2cov ,o eS S  ( )5 *2 *2cov , 5.44 8o eN eS S

100 2.887954 2.833545 0.054408 1.0000

150 0.551595 0.544690 0.006804 0.9496

200 0.172754 0.171038 0.001716 1.0091

 

Simulations to verify the expected value and variance of bootstrap sample variance of a single 
pixel 
    The procedure to calculate the bootstrap variance of a single pixel has been explained in Section B. 
We use the setting B=100 and N=100, 150, 200.  The procedure we repeated 10,000 times. 

N *2S ( )2 *2S S ( )*2E S  ( )*2V S

100 0.99e-2 3.93e-4 1.01e-2 3.93e-4
150 6.61e-3 1.47e-6 6.71e-3 1.46e-6
200 4.97e-3 7.58e-7 5.02e-3 7.44e-7

 

There is a very good agreement between the simulated and analytically calculated value of the 
expectation and the variance of the bootstrap variance. 


