
SI Appendix 
 
Pre-Processing of BOLD Signal and the Origin of Anticorrelations 
 
Pre-processing of BOLD data consists of three steps: first, averaging of BOLD signal 
across voxels within each of the 998 ROIs; second, linear detrending of the signal in 
consecutive 50-second time-windows for each ROI in turn; third, linear regression of 
mean global BOLD signal, mean ventricular BOLD signal and mean white matter BOLD 
signals from each ROI in turn. The residuals obtained from the linear regression are then 
entered into Pearson correlations for the calculation of rsFC. 
 
We found that the piecewise linear detrending step and nuisance regression step 
strengthened the SC-rsFC relationships that we report here, and this suggests that they 
successfully removed noise in BOLD signal due to hemodynamic, cardiac and vascular 
effects. However, it is known [1] that the regression step can potentially induce artefacts 
in the rsFC maps.  
 
Suppose we have two normally distributed random variables, A and B, which are 
statistically independent, and of which we have taken N samples. If we regress our 
samples An and Bn on some third data series Cn, then the residuals of this regression 
(Resid-An and Resid-Bn) will sometimes exhibit a statistical dependence. In particular, if 
Cn is the mean of An and Bn , then Resid-An and Resid-Bn will be tend to be anti-
correlated. Intuitively, this is because whenever An is larger than Bn, then An will be 
larger than Cn (i.e. the mean), whereas Bn will be less than Cn. Thus, Resid-An will be 
positive when Resid-Bn is negative (and vice versa). 
 
This simple example illustrates a phenomenon that can also occur in far more 
complicated systems such as the cerebral cortex. Some of the anti-correlations observed 
in fMRI rsFC maps are therefore likely to be artefactual, and are not representative of 
genuine anticorrelation in underlying neuronal activity. An additional complication is the 
fact that the strength of induced correlations and anti-correlations will vary depending on 
how strongly correlated each ROI is with the various regressors (mean global, ventricular 
and white-matter BOLD signals), and that this in turn will depend on whether that ROI is 
a member of a cluster of ROI whose BOLD signals vary coherently. There is evidence [2] 
that some regions – including those within the DMN – are more correlated with the 
global mean signal than others, and if this substantially affects the manner in which time 
series from these regions respond to data pre-processing, then pre-processing could 
produce a range of confounding influences in subsequent data analysis. 
 
The effects we report in this paper cannot be explained as a result of global mean 
regression, however. We note that the structure-function relationship depicted in Figure 
1A is only slightly weakened when we exclude from the calculation all edges with FC < 0 
(Fig S3B). We recalculated rsFC without performing global mean regression step, instead 
regressing out only the mean signals from the white matter and the ventricles, which are 



spatially distinct from the ROIs in the gray matter. Using this alternate pre-processing 
step, we continued to observe anticorrelations in the data and as well as a robust SC-rsFC 
relationship. 
 
The general pattern of our results (e.g. Fig. 1B) is that stronger SC produces stronger 
rsFC, and the simplest interpretation of the data is that long-range interactions tend to 
facilitate correlation rather than anti-correlation. Furthermore, because most anti-
correlations are observed between region pairs for which SC is absent (Fig. 1D), we 
expect that most anti-correlations in rsFC do not reflect inhibition mediated by direct 
cortico-cortical projections. However, when we examine region pairs that exhibit strong 
anti-correlation but which do have SC, we observe that one member of the region pair is 
usually located within the Default Mode Network (DMN). One interpretation of this 
finding is that the Default Mode Network does engage in long range inhibitory 
interactions. Another interpretation is that regions in the Default Mode Network are 
particularly susceptible to the artefacts induced by the regression of global BOLD signal. 
Further work is necessary to settle this important issue. 
 
 
Inter-Participant Differences in SC and rsFC  
 
In order to test whether individual differences in SC are associated with individual 
differences in rsFC, we computed all pairwise correlations between the SC and rsFC 
maps of the 5 participants. Table S2 shows the result of the correlations calculated over 
all region pairs as well as the results over SC-present region pairs. 
 
Across all ROI pairs, the rsFC of 5 out of 5 participants was most highly correlated with 
their own SC. The mean SC-rsFC correlation within participants was greater than the 
mean SC-rsFC correlation across participants, but this difference did not reach 
significance within our sample of five participants (0.223 versus 0.207, p = 0.12, two-
sample t-test). When including only SC-present edges, 3 of 5 participant best matched 
their rsFC with their own SC, and the mean correlation was again slightly greater within 
participants than across participants (0.425 versus 0.397, p = 0.06, two-sample t-test). In 
low resolution matrices, we did not observe a substantial effect of individual differences. 
 
Because the differences in correlation are relatively small, because of the potential 
influence of differences in ROI registration, and because of our limited sample size, these 
results are far from definitive, but they provide some support for the claim that individual 
differences in SC and in rsFC are indeed related to one another, as predicted in [7]. 
 
 
Regional Differences in the SC-rsFC Relationship 
 
We expect that some regions of the brain are more strongly driven by endogenous 
dynamics, while others are more strongly influenced by the activity of their neighbors. 



Those that are more strongly coupled to their neighbors should show a stronger SC-rsFC 
relationship. In order to investigate regional differences in the strength of the SC-rsFC 
relationship we calculated SC-rsFC correlations separately for each region at the low 
resolution.  Correlations were computed between single columns of the low resolution SC 
and rsFC matrices, which correspond to the SC and rsFC of a single anatomical region 
with all other regions (regardless of whether structural connections are present or not).  
Correlations as well as SC and rsFC patterns for regions rPC and lPCUN are shown in 
Figure 3B.  All regional correlations were rank-ordered and are shown in Figure S5A.  
Regions located along in the posterior medial cortex (e.g the cuneus, precuneus and 
pericalcarine cortex in both hemispheres) are among those with the strongest SC-rsFC 
relationship at low resolution.  We asked if the strength of the SC-rsFC relationship was 
related to network parameters.  We detected weak but significant positive correlations 
between the number and strength of a region’s anatomical connections, and the strength 
of the SC-rsFC correlation for that region. 
 
These results remain preliminary because of two potential confounds. The first potential 
confound is the location of ROIs within the cerebral cortex. Because the cortical location 
of an ROI determines its distance to other regions of the brain, and inter-regional distance 
is known to effect SC and rsFC, as well as the accuracy of tractography algorithms, 
regional location can affect the SC-rsFC relationship. Secondly, the reliability of the 
automatic landmark-based registration algorithm differs across the brain. ROIs that can 
be more consistently localized across scans will tend to exhibit more reliable SC-rsFC 
relationships. 
 
 
Reliability of rsFC Measurement 
 
Because of the numerous potential sources – some physiological and some non-
physiological – of variability in BOLD signal, it is difficult to be definitive regarding the 
origin of any observed rsFC measurement variability. Below we present some 
observations regarding this complex issue. 
 
When we separately examined the reliability of rsFC for structurally connected versus 
unconnected edges, we found that structurally connected edges had more reliable rsFC, 
both in average data (r=0.90 versus r=0.75) and in each individual (Fig. S4).  These 
effects could not be accounted for by the increased average proximity of structurally 
connected edges (surrogate data analysis not shown). 
 
The increased reliability of rsFC among SC-present edges was also observed when 
comparing rsFC from the first 10 minutes against rsFC from the second 10 minutes 
within a single scanning session. The empirical rsFC reliability across 10 minute 
windows for SC-present edges is r=0.66 ± 0.08, and for edges without SC the reliability 
is r=0.47±0.08. (These reliability values represent the mean and standard deviation across 
5 participants.) 



 
When comparing across consecutive 8-minute windows of simulated BOLD from our 
computational model, we found that for ROI pairs linked by SC, the mean inter-window 
correlations in rsFC was r=0.75±0.04, and for ROI pairs without SC it was r=0.69±0.05.  
(These reliability values represent the mean and standard deviation across 5 simulation 
runs, with each simulation employing the SC map of an individual participant.) 
 
For all calculations of rsFC between two ROIs, at least 200 data points are employed. 
Based on numerical tests in which we (a) generated correlated time series, (b) measured 
the correlation between them, and then (c) re-sampled and re-measured the correlations 
while keeping the underlying interaction strengths constant, we conclude that both the 
model and the empirical data exhibit more variability in rsFC than can be attributed 
simply to sample size effects. Both the model and data exhibit unexpectedly low 
reliability, but the reliability is still lower in empirical data than in the model, most likely 
due to MRI acquisition and registration influences. 
 
One of the characteristics shared in the model and the data is the presence of long-range 
temporal autocorrelation (which is sometimes called “long memory”, and is also related 
to the presence of substantial power below 0.01 Hz in BOLD signal). In practice it can be 
impossible to distinguish long memory effects from intermittent changes in the 
underlying generating mechanisms of a time series [3], and long memory can also arise 
from the aggregation of numerous simple dynamical processes [4]. Alternatively, power 
in low frequencies may also arise from physiological sources [2]. We are not in a position 
to distinguish which combination of these effects we may be observing within our 
empirical measurements of BOLD signal, but in the model we can rule out physiological 
and MRI acquisition effects.  
 
The difference in rsFC reliability between those ROI pairs with SC and those without SC 
may reflect the fact that SC facilitates a more persistent interaction between those ROIs. 
Alternatively, it may reflect the fact that SC-linked ROIs, for some other reason, have a 
stronger overall interaction which is then necessarily less variable under repeated finite-
sample measurements. In either case, however, researchers can expect to observe more 
reliable rsFC measurements between ROI pairs that are anatomically linked. 
 
Another consequence of this observation of diminished reliability is that, in quantifying 
the relationship between empirical SC and rsFC, we must keep in mind that SC can only 
predict rsFC to the extent that rsFC is constant. In participant B, for example, we observe 
that 27% of variance in rsFC within the first scan is explained in a bivariate regression 
using SC and fiber distance. To put this number in context, we observe that only 47% of 
the variance in rsFC in the second 10-minute window within that same scan is predicted 
by the rsFC observed in the first 10-minute window. So, SC and fiber distance together 
may have even more of a role in shaping rsFC than is suggested by the proportion of 
rsFC variance that they explain. 
 



 
Computational Models 
 
In the main text we report results using a nonlinear model that produces simulated BOLD 
time series, but for comparison we also implemented a linear model for which the 
correlation structure in spontaneous dynamics can be calculated analytically [7]. More 
information concerning both the linear and nonlinear models are provided below, along 
with a brief comparison of the prediction performance of the linear and nonlinear models. 
 
Model Performance Comparison. The correlation between simulated rsFC and empirical 
rsFC at direct links in the high resolution network was slightly higher in the linear than 
the nonlinear model (r=0.55 and r=0.46 respectively), while the nonlinear model yielded 
a better prediction of the rsFC between indirectly connected nodes (r=0.37 for the 
nonlinear versus r=0.26 for the linear model).  In the low resolution networks, the 
correlation for both linear and nonlinear models between simulated and empirical rsFC 
increased to r=0.70 for directly linked pairs.  Indirectly linked pairs were again better 
captured in the nonlinear model (r=0.23, versus r= −0.03 for the linear model). 
 
Linear Model. The linear model we employed – a small variation on the model of Galán 
[5] -- is derived from the linearization around a fixed point of a general coupled neural 
system driven by spatially and temporally independent Gaussian noise sources. Within 
this framework, the correlation structure of the dynamics can be computed analytically 
given only the coupling matrix and a single parameter governing the rate of activation 
leakage from each node.  
 
The model of Galán was derived by linearizing and discretizing the dynamics of a general 
Wilson-Cowan system. The discretized dynamics are governed by 
  
                                                           
 
where u is a vector of regional states, ξ  is a temporally white Gaussian noise term and ∆t 
is a time step. The generalized coupling matrix A is defined as  
      

 
 
where α is a leak variable from the activity within each node, I is the identity matrix and 
C is a matrix describing inter-nodal interaction efficacies. In place of C, we employed the 
resampled fiber strengths obtained from diffusion spectrum imaging tractography. 
Because this matrix contains only positive terms, the leak term α is chosen to be 
relatively large (α = 2), in order to retain a balance of driving and damping in the model. 
 
Within this model, the covariance and correlation matrices of the nodal dynamics can be 
calculated analytically as a function of the eigenvalues of the matrix A, and of the 
covariance of noise terms input to each node. See reference [5] for further details. 
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Nonlinear model. The nonlinear model, as developed in [6] and extended to large-scale 
network settings in [7], is a neural mass model based on [8]. Each neural mass represents 
a local ensemble of neurons. The dynamical variables incorporated are the mean 
membrane potential of pyramidal cells, V, and inhibitory interneurons, Z, and the average 
number of ‘open’ potassium ion channels, W. The mean cell membrane potential of the 
pyramidal cells is governed by the conductance of sodium, potassium and calcium ion 
through voltage- and ligand-gated membrane channels, 
 
    

 
(1) 

 
 
 
 
 
where gion is the maximum conductance of each population of ion species if all channels 
are open, mion is the fraction of channels open, Vion is the Nernst potential for that ion 
species and QV(Z) is the firing rate of the excitatory (inhibitory) neurons. The fraction of 
open ion channels is determined by the sigmoid-shaped ‘neural activation function’, 
 
 
 
where δion incorporates the variance of this distribution. The fraction of open potassium 
channels is governed by W, with 
 
 
where φ is a temperature scaling factor and τ is a ‘relaxation’ time constant. Cell firing 
rate is also determined by sigmoid activation functions, 
 
 
 
 
where the Qmax are the maximum firing rate. An analogous term is also introduced for the 
inhibitory cells.  
 
The firing of excitatory and inhibitory cell populations feeds back onto the ensemble 
through synaptic coupling to open ligand-gated channels and raises or lowers the mean 
membrane potential accordingly. In the case of excitatory-to-inhibitory and inhibitory-to-
excitatory connections, this is modeled as additional input to the flow of ions across the 
membrane channel, weighted by functional synaptic factors, aei and aie. In the case of 
excitatory to excitatory connections, the rate of firing Qv is assumed to lead to a 
proportional release of glutamate neurotransmitter across the synapse, onto two classes of 
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ligand-gated ion channels: (1) AMPA channels, which open an additional population of 
sodium channels, and (2) NMDA receptors, which open an additional population of 
voltage-gated sodium and calcium channels. rNMDA incorporates the ratio of NMDA to 
AMPA receptors.  
 
The equations above govern the dynamics within each local cell assembly. Coupling 
between N nodes is introduced as competitive agonist excitatory action at the same 
populations of NMDA and AMPA receptors. Locating the i-th node at position xi this is 
incorporated by modifying equation (1) to 
 
 
 
 
 
 
 
 
for i,j=1,…,N.  
 
The parameter c controls the strength of excitatory coupling between cortical regions. If 
c=0 the neural masses evolve independently. The setting c>0 introduces 
interdependences between linked regions, and c=1 corresponds to maximum coupling, 
with excitatory input from outside each region surpassing excitatory input from within 
each region.  For the present paper, we chose a value for the excitatory coupling between 
regions of c=0.15, as this seemed to induce a reasonable balance of transient 
synchronization and desynchronization between regions.  This value for the coupling 
parameter was set slightly higher than in ref [7] to adjust for the larger size and greater 
number of connections per node in the present model (runs with c=0.10 produced similar 
results but with overall lower cross-correlations).  No attempt was made to model 
realistic conduction delays.  All physiologically measurable parameters (conductances, 
threshold potentials and Nernst potentials) are set to values taken from [8].  The nonlinear 
model is simulated in Matlab R2007a (Mathworks, Natick, MA) at a time resolution of 
0.2 msec.  Before data analysis, resulting data sets are downsampled to a time resolution 
of 1 time step = 1 millisecond.  After an initial transient of 2 minutes which was 
discarded, runs proceeded for a total of 16 minutes (960,000 msecs, 4.8 × 106 iterations).  
We ran four simulations with random initial conditions for each of the six structural 
connectivity matrices derived by DSI (two repeat scans for participant A, one scan for 
participants B-E). 
 
To estimate BOLD signals for each neural mass, we followed [9] in employing a 
Balloon–Windkessel hemodynamic model [10,11]. Equations and parameters relating 
neuronal activity and vasodilatory signal with blood inflow, volume, and 
deoxyhaemoglobin content are taken directly from [8]. As in [7], the main input to the 
Balloon-Windkessel model, ‘‘neuronal activity,’’ is taken to be the absolute value of the 
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time derivative of the mean excitatory membrane potential within each brain region (i.e. a 
proxy for glutamate turnover). As in the empirical data, we detrended the data and 
regressed a global mean signal from each node’s time series before calculating simulated 
rsFC maps. Unlike the empirical BOLD signals, there was not a very strong influence of 
a coherent global signal observed within the simulated BOLD before pre-processing. 
 
The model performance results reported in Figure 1 and in Table S1 are for individual 
runs. Unless otherwise stated, the remainder of the model results is based on rsFC maps 
that are an average of four separate model runs. 
 
Examination of fast voltage-time traces revealed complex synchronization dynamics as 
previously described in ref [7].  While in the current study we did not attempt to compute 
information flow patterns at high temporal resolution, the model does in principle allow 
for an investigation of synchrony and coherence at fast time scales. 
 
 
Structural and Functional Connectivity within the Default Mode Network 
 
The default mode network is reliably and robustly detected in resting state fMRI. We 
asked if the prominence of the Default Mode Network (DMN) in resting state activity can 
be accounted for by its structural connectivity.  After extracting the 200 most strongly 
coupled ROIs comprising the DMN (see Fig. S5D) we determined the structural 
connection density within this network as well as the density of connections between the 
DMN and the 200 most anti-correlated ROIs.  Within-DMN connection density was 
found to exceed the connection density between DMN and anti-correlated ROIs by more 
than 8-fold (0.074 versus 0.009, respectively).  We then asked how the intra-DMN 
connection density compared relative to other networks that are extracted from 6 
nonoverlapping clusters of seed ROIs symmetrically distributed across the two cerebral 
hemispheres.  We formed a distribution of connection densities by randomly sampling 
20,000 such networks.  The DMN network is found to be in the top 1% of this 
distribution which has a mean of 0.050 and a standard deviation of 0.009.  This indicates 
that the DMN represents a very highly and densely connected subnetwork within cortex. 
 
The relationship between SC and rsFC was stronger within the DMN than across the 
entire cerebral cortex.  For the 200 ROIs comprising the DMN, the presence of a 
structural connection predicted rsFC with r = 0.64, while the overall correlation between 
SC and rsFC was found to be r = 0.55.  Both values greatly exceed those reported here for 
the entire cortex (see Table S1, 998 ROI data). 
 
While both of our computational models accurately captured functional connectivity 
within the DMN along the medial wall of the cerebral cortex (Fig. 3C), they failed to 
account for the functional linkage of the lateral parietal cortex.  An examination of the 
structural connection within the DMN (Fig. 3D) reveals that very few structural 
connections were detected between the precuneus/posterior cingulate cortex and the 



lateral parietal cortex.  The discrepancy between structural and functional connectivity in 
this portion of the DMN may be due to i) a failure of DSI to detect actually present 
structural connections, especially when tracking small fibers perpendicular to major 
fasciculi as in this case; ii) disproportionate physiological strengths within the DMN that 
compensate for the lack of strong structural coupling; iii) a significant role of other brain 
regions, not captured in the structural scans (e.g. the thalamus), in functionally linking 
lateral parietal cortex with the DMN.  
 
These results were obtained using seed clusters for the default mode network derived 
from data reported in [12].  Similar result were found for slightly different sets of peak 
foci reported in [13,14]. 
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