Supplementary data

Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway

David Kentner, Victor Sourjik

Table of content:

- Figure S1 Microscopy setups used to measure FRET.
- **Figure S2** Localization of CheZ in *cheA*^{M981} cells.
- Figure S3 Attractant exchange profile during kinetics measurements.
- **Table SI**Strains and plasmids used in this study.

Supplementary references for Table SI.

- **Table SII**FRET mapping of protein interactions by acceptor photobleaching.
- **Table SIII**Total and stimulation-dependent FRET values.
- **Table SIV**Expression levels of FRET pairs used for attractant stimulation experiments.

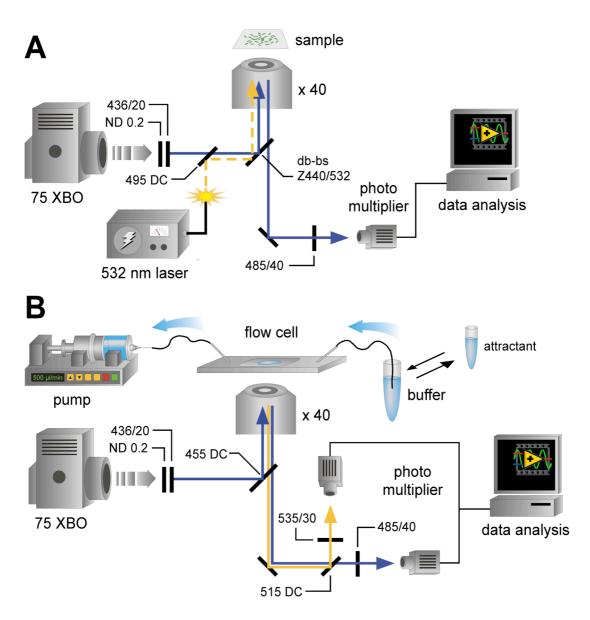
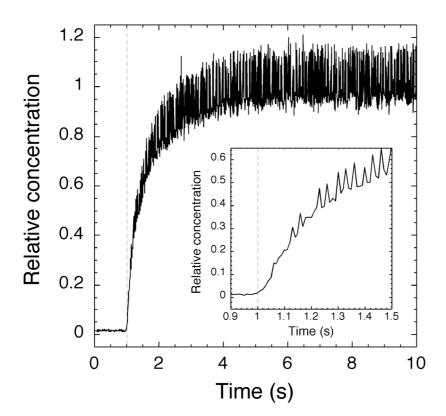



Figure S1 Microscopy setups used to measure FRET. (A) Acceptor photobleaching assay.(B) Flow assay used to test stimulation dependence of protein interactions.

Figure S2 Localization of CheZ in *cheA*^{M981} cells. CheZ-YFP is expressed at 5 μ M IPTG induction in strain VS176 ($\Delta cheY$ -cheZ cheA^{M981}), which contains CheA_L, but not CheA_S.

Figure S3 Attractant exchange profile during kinetics measurements. Exchange profile was measured as fluorescence in yellow channel using 100 nM solution of fluorescein as a tracer, and normalized to the final level of fluorescence. Signal integration time was 0.01 s. *Inset* shows profile during first 0.5 s of the exchange. Dashed line marks beginning of the exchange at 1 s. With the final concentration of aspartate used in these experiments being 10 mM, the saturating stimulation was reached in < 0.1 s. Signal fluctuations are due to the shott noise of the measurement.

Strain or plasmid	Relevant genotype	Reference
Stuaina		
Strains	11.	
RP437	wild type	Parkinson and Houts, 1982
RP1076	Δ (cheW tar tap cheR cheB cheY)	Sandy Parkinson, personal gift
RP2893	$\Lambda(tap chaP chaP chaV cha7)$	Sourjik and Berg, 2004 Sandy Parkinson, personal gift:
KF 2093	Δ (tap cheR cheB cheY cheZ)	Sourjik and Berg, 2002
RP4972	AcheB	Sandy Parkinson, personal gift;
		Lovdok <i>et al</i> , 2007
RBB1041	Δ (cheA cheW tar tap cheR cheB cheY cheZ)::Zeo ^R	Robert B. Bourret, personal gift
		Kentner et al, 2006; Sourjik et al
		2004
UU1250	tsr tar tap trg aer	Ames et al, 2002
VS100	$\Delta cheY$	Sourjik and Berg, 2000
VS116	ΔflhC	Kentner et al, 2006
VS124	Δ (cheB cheY cheZ)	Sourjik and Berg, 2002
VS126	ΔcheR	Lovdok <i>et al</i> , 2007
VS149	Δ (cheR cheB cheY cheZ)	Sourjik and Berg, 2004
VS153	Δ (cheR cheB cheY cheZ) Δ tsr	Sourjik and Berg, 2004
VS161	ΔcheZ	Lovdok <i>et al</i> , 2007; Vaknin and Berg, 2004
VS166	ΔcheA	this study
VS167	$\Delta cheA$ $\Delta (tap cheR cheB cheY cheZ)$	this study
VS176	$\Delta(cheY cheZ) cheA^{M981}$	Ady Vaknin, personal gift
VS177	$\Delta(cheY cheZ) cheA\Delta P2$	Ady Vaknin, personal gift
DK1	Δ (cheR cheB cheY cheZ) Δ tsr tar Δ pp	this study
		5
Plasmids		
pTrc99a	Expression vector. pBR ori, pTrc promotor, Amp ^R .	Amann <i>et al</i> , 1988
BAD33	Expression vector. pACYC ori, pBAD promotor; Cm ^R .	Guzman et al, 1995
pDK2 ^a	1 6	Kentner et al, 2006
pDK4 ^a	pTrc99a derivative. Expression vector for cloning of N-terminal YFP ^{A206K} fusions;	Kentner et al, 2006
DDK4	pTrc99a derivative.	Kenthel <i>et al</i> , 2000
DK66 ^a	*	Kentner et al, 2006
	pTrc99a derivative.	
pDK85ª	•	Kentner et al, 2006
	pTrc99a derivative.	
DK79	Expression vector. pACYC ori, pBAD promotor; Kan ^R .	Kentner et al, 2006
pDK53	Tar-CFP expression plasmid; pDK79 derivative.	Kentner et al, 2006
DK58	Tar-YFP expression plasmid; pDK66 derivative.	Kentner et al, 2006
DK80	Tsr-YFP expression plasmid; pDK66 derivative.	this study
pDK198	Tar-CFP and Tar-YFP expression plasmid; pDK66 derivative.	this study
DK203	Tar-CFP and Tsr-YFP expression plasmid; pDK66 derivative.	this study
DK158	YFP-CheA ^{M981} expression plasmid; pDK4 derivative.	this study
pDK173 pDK165	CheA ^{M981} -YFP expression plasmid; pDK66 derivative. CFP-CheA ^{M981} expression plasmid; pDK79 derivative.	this study
pDK165	CheA ^{M981} -CFP expression plasmid; pDK79 derivative.	this study this study
pDK100	YFP-CheA ⁹⁸⁻⁶⁵⁵ expression plasmid; pDK4 derivative.	this study
pDK57	CheA ⁹⁸⁻⁶⁵⁵ -YFP expression plasmid; pDK66 derivative.	this study
pDK38	CFP-CheA ⁹⁸⁻⁶⁵⁵ expression plasmid; pDK79 derivative.	Kentner <i>et al</i> , 2006
pDK52	CheA ⁹⁸⁻⁶⁵⁵ -CFP expression plasmid; pDK79 derivative.	this study
pDK12	YFP-CheW expression plasmid; pDK4 derivative.	Kentner et al, 2006
pDK54	CheW-YFP expression plasmid; pDK66 derivative.	this study
pDK14	CFP-CheW expression plasmid; pDK79 derivative.	Kentner et al, 2006
pDK49	CheW-CFP expression plasmid; pDK79 derivative.	this study
pDK20	YFP-CheR expression plasmid; pDK4 derivative.	Kentner et al, 2006
pDK19	CheR-YFP expression plasmid; pDK66 derivative.	this study
pDK22	CFP-CheR expression plasmid; pDK79 derivative.	this study
pDK21	CheR-CFP expression plasmid; pDK79 derivative. YFP-CheR ^{D154A} expression plasmid; pDK4 derivative.	this study
pDK116 pVS19	YFP-CheX ²¹ expression plasmid; pDK4 derivative. YFP-CheY expression plasmid; pTrc99a derivative.	this study this study
pVS18	CheY-YFP expression plasmid; pTrc99a derivative.	Sourjik and Berg, 2002
nvnix		

Table S1Strains and plasmids used in this study.

pVS74	CFP-CheY expression plasmid; pBAD33 derivative.	this study
pVS73	CheY-CFP expression plasmid; pBAD33 derivative.	this study
pVS63	YFP-CheZ expression plasmid; pTrc99a derivative.	this study
pVS64	CheZ-YFP expression plasmid; pTrc99a derivative.	Liberman et al, 2004
pVS51	CFP-CheZ expression plasmid; pBAD33 derivative.	this study
pVS54	CheZ-CFP expression plasmid; pBAD33 derivative.	Sourjik et al, 2002
pVS102	YFP-CheR expression plasmid; pBAD33 derivative.	Kentner et al, 2006
pDK135	CheB-YFP expression plasmid; pDK79 derivative.	this study
pDK159	CheB ^{S164C} -YFP expression plasmid; pDK79 derivative.	this study

^apDK expression vectors, and derivatives thereof, used A206K versions of YFP and CFP with abolished weak dimerization (Zacharias *et al*, 2002).

Supplementary references for Table SI.

- Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in *Escherichia coli*. *Gene* **69**: 301-315
- Ames P, Studdert CA, Reiser RH, Parkinson JS (2002) Collaborative signaling by mixed chemoreceptor teams in *Escherichia coli*. *Proc Natl Acad Sci USA* **99:** 7060-7065
- Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and highlevel expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177: 4121-4130
- Kentner D, Thiem S, Hildenbeutel M, Sourjik V (2006) Determinants of chemoreceptor cluster formation in *Escherichia coli*. *Mol Microbiol* **61**: 407-417
- Liberman L, Berg HC, Sourjik V (2004) Effect of chemoreceptor modification on assembly and activity of the receptor-kinase complex in *Escherichia coli*. J Bacteriol **186**: 6643-6646
- Lovdok L, Kollmann M, Sourjik V (2007) Co-expression of signaling proteins improves robustness of the bacterial chemotaxis pathway. *J Biotechnol* **129:** 173-180
- Parkinson JS, Houts SE (1982) Isolation and behavior of *Escherichia coli* deletion mutants lacking chemotaxis functions. *J Bacteriol* **151:** 106-113
- Sourjik V, Berg HC (2000) Localization of components of the chemotaxis machinery of *Escherichia coli* using fluorescent protein fusions. *Mol Microbiol* **37:** 740-751
- Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. *Proc Natl Acad Sci USA* **99:** 123-127
- Sourjik V, Berg HC (2004) Functional interactions between receptors in bacterial chemotaxis. *Nature* **428:** 437-441
- Vaknin A, Berg HC (2004) Single-cell FRET imaging of phosphatase activity in the *Escherichia coli* chemotaxis system. *Proc Natl Acad Sci USA* **101:** 17072-17077
- Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. *Science* **296**: 913-916

CFP fusion ^a	YFP fusion ^a	strain	strain genotype ^b	protein-CFP/ protein-YFP FRET (%) ^c	protein-CFP/ YFP-protein FRET (%)	CFP-protein/ protein-YFP FRET (%)	CFP-protein/ YFP-protein FRET (%)	Comment
Tar	Tar	RP437 VS116	wild type <i>flhC</i>	3.0 6.6 ± 2.1	N/A	N/A	N/A	Direct interaction.
Tar	Tsr	RP437 VS116	wild type <i>flhC</i>	6 15	N/A	N/A	N/A	Direct interaction.
Tar	CheA _L	RP437 VS166	wild type A	-	-	N/A	N/A	CheA and CheW have previously been shown
Tar	CheAs	RP437 VS166	wild type A	-	-	N/A	N/A	to bind receptors. The absence of FRET
Tar	CheW	RP437 RP1076	wild type WRBY	-	-	N/A	N/A	between Tar-CFP and CheA or CheW
Tar ¹⁻⁴²⁵	CheW	RP1041 VS116	AW tar tap RBYZ flhC	1.4 0.8	-	N/A	N/A	fusions is probably due to the large distance
Tar ¹⁻⁴²⁵	CheAs	RP437 RP1041	wild type AW tar tap RBYZ	-	-	N/A	N/A	between the fluorophores. Using a Tar ¹⁻⁴²⁵ -CFP fusion, we detected FRET with CheW-YFP, but not with YFP-CheW or CheA fusions.
Tar	CheY	RP437 VS100	wild type Y	-	-	N/A	N/A	No interaction.
Tar	CheZ	RP437 VS161	wild type Z	-		N/A	N/A	No interaction.
Tar	CheR	RP437 VS116	wild type flhC	-	2.3 1.5	N/A	N/A	Direct interaction. FRET was only seen with the N-terminal CheR fusion, consistent with its better localization to clusters in fluorescence images.
Tar	CheB ^{S164C}	VS153 DK1 VS177	RBYZ tsr RBYZ tsr tar∆pp YZ A∆P2	8.5 - 1.2 ^d	N/A	N/A	N/A	Direct interaction. FRET was also detected with Tar ⁴²⁵⁻ ⁵⁵¹ /CheB ^{8164C} , demonstrating that the interaction determined lies in the C-terminal receptor region.
CheA _L	CheA _L	RP437 VS116	wild type flhC	2.0 1.8	2.3 2.2	1.9 1.4	2.1 2.3	Direct interaction (dimerization).
CheA _L	CheAs	RP437 VS116	wild type flhC	2.2	2.1 2.1	1,7	1.7	Direct interaction (dimerization).
CheA _L	CheW	RP437 VS116	wild type flhC	4.1 5.7	1.2 2.0	3.5 4.1	1.2 1.6	Direct interaction.
CheA _L	CheY	RP437 VS116	wild type flhC	2.0 4.6	1.1 3.5	1.2 2.4	1.3 2.6	Direct interaction.
CheA _L	CheZ	RP437 VS116	wild type flhC	2.0 2.4	0.7 0.8	3.3 2.4	2.1	Direct interaction. In contrast to previous reports, CheZ is observed to bind CheA ₁ .
CheA _L	CheR	RP437 VS126 VS166 UU1250	wild type R A tsr tar tap trg aer	- - -	- 1.0 -	- - - -	- 0.6 -	Presumably indirect FRET through binding of CheA and CheR to receptors.
CheA_L	CheB	RP437 VS116	wild type <i>flhC</i>	1.7 1.9	N/A	4.2 2.6	N/A	Direct interaction.
CheA _s	CheAs	RP437 VS116	wild type <i>flhC</i>	1.1 1.3	1.2 0.9	2.5 3.5	2.6 2.5	Direct interaction (dimerization).
CheA _s	CheW	RP437 VS116	wild type <i>flhC</i>	6.3 3.9	2.2 0.6	4.2 5.0	3.2 3.1	Direct interaction.
CheAs	CheY	RP437 VS116	wild type <i>flhC</i>	1.0 1.2	0.9 0.6	2.1 2.5	2.0 3.5	Direct interaction.
CheAs	CheZ	RP437 VS116	wild type <i>flhC</i>	2.1 ± 0.1		7.1 3.4	4.4	Direct interaction.
CheA _s	CheR	RP437 VS126 VS166	wild type R A	- - -	1 ± 0.3 1.2 ± 0.1			See CheA _L /CheR.

 Table SII
 FRET mapping of protein interactions by acceptor photobleaching.

		UU1250	tor tar tan tra aar	_				
CheA _s	CheB	V\$153	tsr tar tap trg aer		N/A	3.9	N/A	Direct interaction. FRET was also detected for CheA ⁹⁸⁻²⁵⁷ /CheB ¹⁻¹³⁴ , consistent with an association of the CheA response regulator binding domain with the N- terminal CheB domain.
CheW	CheW	RP437 RBB1041 VS116	wild type AW tar tap RBYZ flhC	4.5 2.1	2.3	3.2 2.4	2.7	Indirect FRET through binding of CheW to receptor and possibly CheA oligomers.
CheW	CheY	RP437 RP1076 RBB1041 VS177	wild type W tar tap RBY AW tar tap RBYZ YZ cheAΔP2	1.2 1.5 -		2.8 4.1	- - -	Presumably indirect FRET through binding of CheW and CheY to CheA.
CheW	CheZ	RP437 VS161	wild type Z	-			-	No interaction.
CheW	CheR	RP437 VS126	wild type <i>R</i>	-	-	-	-	No interaction.
CheW	CheB	RP437 RP1076 RBB1041	wild type W tar tap RBY AW tar tap RBYZ	2.0 3.0	N/A	1.7 2.5 ± 0.8	N/A	Presumably indirect FRET through binding of CheW and CheB to CheA.
CheY	CheY	RP437 VS100 RP1076 VS167 VS116	wild type Y W tar tap RBY tap RBYZ A flhC	0.7 +/- +/-	- +/- - -	1.3±0.6	- - - -	Two CheY fusions probably come into proximity when CheY interacts with CheA, CheZ and/or FliM. Our measurements of FRET responses to chemotactic stimulation showed that these interactions are phosphorylation- dependent, and we assume that variations in CheY phosphorylation account for variations in acceptor bleaching measurements of CheY/CheY FRET.
CheZ	CheY	RP437 RP1076 VS166	wild type W tar tap RBY A	3.0 2.8	2.0 2.7	1.9 1.5 -	2.2 1.5	Direct interaction between CheZ and phospho-CheY. FRET in RP1076, where CheA should be largely inactive by lack of CheW and CheY should therefore be non- phosphorylated, is probably due to binding of CheZ and dephosphorylated CheY to CheA. Stimulation-dependent FRET between CheY and CheZ was only observed for the C- terminal CheZ fusions.
CheY	CheR	RP437 VS100	wild type Y	-		-	-	No interaction.
CheY	CheB	VS126 RP437 RP1076 RBB1041	<i>R</i> wild type <i>W tar tap RBY</i> <i>AW tar tap RBYZ</i>	- +/- -	N/A	- - - -	N/A	FRET was only detected in some experiments in strain RP1076, probably as a result of CheY and CheB both binding to CheA. Competetion of

								the two fusions and, in wild type cells, of native CheY/CheB for CheA could explain poor FRET signals. As for CheY/CheY FRET, variations between experiments can be explained by variations in the response regulator phosphorylation level.
CheZ	CheZ	RP437 VS116	wild type <i>flhC</i>	3.4 3.5	1.9 2.2	3.2 4.2	3.1 3.8	Direct interaction (dimerization).
CheZ	CheR	RP437 VS161 VS126	wild type Z R	- -				No interaction.
CheZ	CheB	RP437 VS124 VS149 VS167	wild type BYZ RBYZ tap RBYZ A	3.2 0.8	N/A	- 3.8 1.3 -	N/A	Interaction presumably results from CheZ and CheB both binding to CheA. The absence of FRET in wild type cells could be due to competetive binding of native proteins.
CheR	CheR	RP437 VS126 RBB1041 VS116	wild type R AW tar tap RBYZ flhC	- - -	0.9 1.2	- - -	1.6 2.1 ± 0.4 2.4	CheR proteins probably meet when binding to receptors. FRET is more efficient for N-terminal CheR fusions, which localize better to clusters.
CheR	CheB	RP437 VS149	wild type <i>RBYZ</i>	- -	N/A	- -	N/A	Although CheR and CheB both bind to receptors, no FRET was detected, probably due to mutual displacement from their overlapping binding sites and the distance between fluorescent protein fusions bound to different receptors being too large.
CheB	CheB	RP437 RP4972	wild type B	-	N/A		N/A	No interaction.

^aExpression of CFP and YFP fusions was induced with 0.01% arabinose and 50 μ M IPTG, respectively, except for pDK58, pDK138, pDK159, pDK203 (20 μ M IPTG) and pDK198 (100 μ M IPTG).

^bDeletions of chemotaxis genes are abbreviated by single letters, i.e. *Y* for *cheY*.

^cFRET efficiency was defined as a percentage change in CFP fluorescence upon bleaching (see Figure 2), (C_{post} - C_{pre})/ $C_{post} \times 100\%$, where C_{pre} is CFP fluorescence before YFP bleaching, and C_{post} is CFP fluorescence after YFP bleaching.

^dMeasured as a percentage change in CFP fluorescence upon saturating attractant stimulation in the flow cell.

Fusion pair ^a	Total FRET (%) ^b	Stimulus-dependent FRET (%)	Stimulus-dependent FRET/ Total FRET (%)
Tar-CFP/Tar-YFP	13.6 ±1.0	2.1 ±0.1	15.5 ±1.5
Tar-CFP/Tsr-YFP	20.8 ±0.9	2.8 ± 0.4	13.2 ±1.4
Tar-CFP/CheB ^{S164C} -YFP	8.9 ±1.1	4.2 ±0.4	47.8 ± 4.3
CFP-CheA _s /CheY-YFP	5.5 ±0.8	2.7 ±0.4	48.5 ±0.5
CFP-CheA _s /CheB ^{S164C} -YFP	3.6 ±0.3	1.1 ±0.1	32.3 ±1.0
CheZ-CFP/CheY-YFP	8.6 ±0.3	6.5 ±0.4	76 ±2.0
FliM-CFP/CheY-YFP	2.2 ±0.1	1.9 ±0.1	85 ±6

^aFRET amplitude was determined in the same strains that have been used in Figures 3 and 4: Tar/Tar and Tar/Tsr pairs were measured in strain VS116 (*flhC*) and all other FRET pairs in strain VS153 (*tsr cheR cheB cheY cheZ*). ^bFRET efficiency was determined as in Table SII.

Table SIV	Expression levels of FRET pairs used for attractant stimulation
experiments	

Fusion pair	CFP ^a ($\times 10^3$ molecules/cell)	YFP ($\times 10^3$ molecules/cell)	CFP (μM)	YFP (μ M)
Tar-CFP/Tar-YFP	10.1 ± 1.3	18.7 ±1.8	9.3 ± 1.2	17.3 ± 1.7
Tar-CFP/Tsr-YFP	9.7 ±1.8	58.5 ±4.6	9.0 ± 1.7	54.0 ± 4.3
Tar-CFP/CheB ^{S164C} -YFP	2.4 ± 0.2	46.1 ±5.5	2.3 ± 0.2	42.5 ± 5.1
CFP-CheA _s /CheY-YFP	18.7 ± 2.2	37.9 ±3.0	17.2 ± 2.0	34.9 ± 2.8
CFP-CheA _s /CheB ^{\$164C} -YFP	14.9 ±1.3	45.3 ±7.2	13.8 ± 1.2	41.8 ± 6.1
CheZ-CFP/CheY-YFP	12.7 ±0.5	24.0 ± 3.0	11.7 ± 0.5	22.1 ± 3.0
FliM-CFP/CheY-YFP	32.5 ±1.6	36.3 ±6.1	30.0 ± 1.5	33.4 ± 5.6

^aExpression levels were quantified as described in Materials and methods.