Mechanistic and functional insights into fatty acid activation in *Mycobacterium tuberculosis*

Pooja Arora^{1†}, Aneesh Goyal^{2†}, Vivek T Natarajan^{1†}, Eerappa Rajakumara², Priyanka Verma¹, Radhika Gupta³, Malikmohamed Yousuf ², Omita A. Trivedi¹, Debasisa Mohanty¹, Anil Tyagi³, Rajan Sankaranarayanan^{2*}and Rajesh S. Gokhale^{1, 4*}

¹National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India. ²Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500 007, India.

³Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.

⁴Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India (by courtesy).

[†] Authors have contributed equally •Corresponding Authors.

SUPPLEMENTARY INFORMATION

Contents:	Supplementary Figures (5 figures)	2

Supplementary Tables (4 tables)8

Supplementary Method 12

		\downarrow \downarrow	Ļ			
FAAL23	QTTAYL	Q YTSGST R	PP A GVMITYKN	NILANFQQ	194 \	
FAAL28	PSTAYL	QYTSGSTR:	TP A GVVMSHQI	IVRVNFEQ	194	
FAAL24	PETAYL	QYTSGSTR:	PP A GVMVSNKI	IVFANFEQ	199	
FAAL25	PDILYL	QYTSGSTR:	TP A GVMVSNKN	ILFANFEQ	198	
FAAL21	PSAAYL	QYTSGSTR	AP A GVMISHRN	NLQANFQQ	193	FAAT.
FAAL26	TGAAYL	QYTSGSTR:	TP A GVIVSHTN	VIANVTQ	239	
FAAL29	PSTAYL	QYTSGSTR	AP A GVVLSHKI	VITNCVQ	234	
FAAL30	DWSSYL	Q YTSGST A I	NP <mark>R</mark> GVVLSMRN	NVTENVDQ	194	
FAAL31	DAVSHL	QYTSGSTR	PP V GVEITHR <i>I</i>	AVGTNLVQ	224	
FAAL32	ETVAYL	QYTSGSTR	IP <mark>S</mark> GVQITHLN	NLPTNVVQ	217)	
FACL3	QDVSDI	LFTSGTTG	RS <mark>K</mark> GVLCAHR(QSLSASAS	200 \	
FACL35	SDPVNI	QYTSGTTA	YP <mark>K</mark> GVTLSHRN	NILNNGYL	219)
FACL2	RRASII	ILTSGTTG	IP <mark>K</mark> GANRNTPI	PTLAPIGG	250	
FACL12	SHGKVI	LTSGTTG	IP <mark>K</mark> GA-RHSG	GGIGTLKA	222	
FACL19	ADAIYL	LYTGGTTG	FP <mark>K</mark> GVMWRHEI	DIYRVLFG	197	
FACL5	DSPALI	MYTSGTTG	RP <mark>K</mark> GAVLTHAN	ILTGQAMT	214	
FACL13	DDNLFI	MYTSGTTG	HP <mark>K</mark> GVVHTHES	SVHSAASS	187	
FACL1	MDPFMM	IFTSGTSG	NP <mark>K</mark> AVPVSHLM	ATFAGRS	181	
FACL17	ADLFML	IFTSGTSG	OP <mark>K</mark> AVKCSHRF	CVAIAGVT	180	
FACL8	DQVIGL	TYTGGTTG	KP <mark>K</mark> GVIGTAQS	SIATMTSI	239	FACL
FACL33	EGPAVL	Q GTAGST G	AP <mark>R</mark> TAILSPG	AVLSNLRG	178	(
FACL7	PDDAMI	MFTGGTTG	LP <mark>K</mark> MVPWTHAI	NIASSVRA	194	
FACL4	REGDLL	QYSSGTTG	RP <mark>K</mark> GIKRELPH	IVSPDAAP	215	
FACL6	KDTAFY	IFTSGTTG	FP <mark>K</mark> ASVMTHHE	RWLRALAV	228	
FACL22	DALAYA	TYTSGTTG	PP <mark>K</mark> AAIHRHAI	OPLTFVDA	176	
FACL34	DDDAYV	QYTSGSTA	AP <mark>R</mark> GVVITYRI	ILLSNMRA	200	
FACL10	EDPLAM	IFTSGTTG	EP <mark>K</mark> AVLLANRT	FFAVP DI	200)
FACL15	TDPATL	IYTSGTT <mark>G</mark> I	RP <mark>K</mark> GCQLTQSI	NLVHEIKG	210 /	,

Fig S1. Sequence based analyses of FAAL and FACL proteins

(**S1a**). Sequence alignment of representative FAAL and FACL homologues were carried out using ClustalW and a part of the alignment is depicted for clarity. The class-specific conservation of residues in the nucleotide binding motif is indicted by arrows.

(**S1b**). Enzyme assay carried out with FACL19 mutant proteins, FACL19L172Q (lane1 and 2), FACL9G179R (lane 3 and 4) and FACL19K192A (lane 5 and 6) in the absence or presence of 1mM CoASH respectively and the products were separated on TLC. Acyl-AMP and acyl-CoA products were identified based on Rf.

(**S1c**). Enzyme assay performed with FAAL28 full length protein (lane 1), N1 protein (FAAL28; 1–460 amino acids) (lane 2), N1 protein with equimolar amount of C1 (FAAL28 460–580 amino acids) (lane 3), N1 and C1 in 1:5 molar ratio (lane 4) and the products were separated on TLC. Acyl-AMP and acyl-CoA products were identified based on Rf.

(**S1d**). Enzyme assay carried out with FACL17 hybrid proteins, FACL17N28C (lane1 and 2), FACL17N15C (lane 3 and 4) and FACL17N29C (lane 5 and 6) in the absence or presence of 1mM CoASH respectively and the products were separated on TLC. Acyl–AMP and acyl–CoA products were identified based on Rf.

Fig S2. Structure of FAAL28 N terminal domain

A stereo representation of the experimental electron density map of a beta sheet of FAAL28 N terminal domain contoured at 0.8 σ

Fig S3. Structure based sequence comparison and topology of FAAL28

(**S3a**). Various FAAL proteins like FAAL25 and FAAL32, a FACL member (FACL19) and other structurally characterized homologous protein sequences were compared. The FAAL specific insertion is indicated by a line on top of the FAAL28 sequence spanning residues 351–372. Residues (354–365) deleted in FAAL28Δ mutant, used for biochemical studies, are indicated in magenta.

(S3b). Topology diagram of N1 depicts the secondary structural elements and their connectivity in the N terminal domain of FAAL28, the FAAL specific insertion is encircled.

		N-terminal	domain re	sidues	C-termina	l domain res	idues
	ACS	F163	G165	A357	8523	G524	R584
	FAAL28	Y220	P95	P269	Y468	G469	R528
Arg528	FAAL21	Y219	P95	P268	Y467	G468	N526
	FAAL23	Y220	P95	P269	Y468	G469	R524
	FAAL24	Y225	P95	P274	Y473	G474	R532
	FAAL25	Y224	P97	P273	Y472	G473	R531
Туг220 Сод	FAAL26	Y220	P97	P269	D470	G471	R529
	FAAL29	Y257	P132	P306	D506	G507	R565
	FAAL30	Y220	P95	P269	D472	G473	R531
Tyr468	FAAL31	Y245	P125	P296	D508	G509	R573
Pro269 Gly469	FAAL32	F237	P118	P289	D498	G499	R579
	FAAL33	Y203	P87	P251	A421	G422	L477
	FAAL34	H220	R90	P269	H437	G438	R489

Fig S4 : Conservation of CoASH binding residues in mycobacterial FAAL proteins

(S4a). CoASH molecule docked into the active site of FAAL28 with C - terminal domain modeled in CoA binding conformation.

(S4b). Conserved residues involved in CoA binding highlighted across different FAALs.

b

а

Fig S5. Kinetic analysis of LAMS inhibition

(S5a). The Time dependent inhibition of FAAL (I) and FACL (II) proteins as a function of LAMS concentration. The concentrations of LAMS tested were: (\blacksquare) 0nM, (▲) 25nM, (\bullet) 50nM, (\circ) 75nM and (\Box) 200nM.

(S5b). Enzymatic turnover recovery assays. FAAL28 (I) and FACL19 (II) were incubated with LAMS for (\blacktriangle) 15, (\Box) 30 and (\bullet) 60 min. The control assays were performed with proteins incubated in the absence of LAMS for (\blacksquare) 60min.

(S5c). Limited proteolysis of FAAL28 and FACL19 proteins in the presence of increasing concentrations of LAMS

Supplementary Table 1 : FAAL and FACL proteins generated for the inter-conversion studies and their properties

Protein	Mutation (Insertion/ deletion)	Protein expression and solubility status	Expected activity	Observed activity	Comments	
FACL19	-	soluble	Acyl-CoA forming	Acyl-CoA forming	Km 24µM	
FACL19 ₁	FAAL28 residues 342 to 372 inserted in place of residues 348 to 357 in FACL19	Soluble and comparable expression to WT	Acyl-AMP-forming	Acyl-AMP forming (at low CoASH concentrations)	Km for CoASH could not be determined as saturation of CoA formation was not observed	
FACL6	-	Soluble	Acyl-CoA forming	Acyl-CoA forming		
FACL6 _i	FAAL28 residues 342 to 372 inserted in place of residues 362 to 376 in FACL6	Poorly expressed and present in inclusion body	Acyl-AMP-forming	N.D		
FAAL28	-	Soluble	Acyl-AMP-forming	Acyl-AMP-forming		
FAAL28 _{A0}	Deletion of residues 342 to 372	Expressed but is present in inclusion body	Acyl-CoA forming	N.D		
FAAL28 _{A1}	Deletion of residues 341 to 372	Expressed but is present In inclusion body	Acyl-CoA forming	N.D		
FAAL28 _{A2}	Deletion of residues 350 to 372	Expressed in small amounts and does not purify to homogeneity	Acyl-CoA forming	Acyl-CoA forming	No adenylate detected, and in the presence of CoASH synthesizes CoA	
FAAL28 _{A3}	Deletion of residues 357 to 372	Expressed in small amounts and does not purify to homogeneity	Acyl-CoA forming	Acyl-CoA forming	No adenylate detected and in the presence of CoASH synthesizes CoA	
$\begin{array}{c} \text{FAAL28}_{\Delta} \\ \text{(used for} \\ \text{kinetics)} \end{array}$	Deletion of residues 354 to 365	Expresses and purified to homogeneity	Acyl-CoA forming	Acyl-CoA forming	Km for CoASH >500µM	
FAAL30	-	Soluble	Acyl-AMP-forming	Acyl-AMP-forming		
FAAL30	Deletion of residues 363 to 372	Expressed in inclusion body	Acyl-CoA forming	N.D		
FACL19 _{AS}	A A S A A S S A S S A A S sequence of amino acids inserted in place of residues 348 to 357 in FACL19	Soluble and comparable expression to WT	Acyl-AMP-forming	FAAL makes very small amounts of CoA	Km for CoASH could not be determined as saturation of CoA formation was not observed	

Supplementary Table 2 : Fatty acid substrate specificity determined biochemically for different FAAL and FACL proteins

FadD	C ₆	C ₁₂	C ₁₆
FACL6	+	+	+
FACL8	+	+	+
FAAL9	N.D.	+	+
FACL10	-	+++	++
FACL13	N.D.	+++	++
FACL15	-	+	+
FACL17	+	+	+
FACL19	+	+	+
FAAL23	-	+	+
FAAL26	-	+	+
FAAL28	-	+	+
FAAL29	N.D.	+	N.D.
FAAL30	N.D.	+	-
FAAL32	N.D.	-	+

Supplementary Table 3 : Primers used in the study

Mutant protein		Primers sequence			
FACL19L172Q		5'GAC GCC ATC TAT CTG CAG TAC ACC GGC GGC ACC 3' 5'GGT GCC GCC GGT GTA CTG CAG ATA GAT GGC GTC 3'			
FACL19G179R		5'CC GGC GGC ACC ACC CGT TTC CCC AAG GGT GTG 3' 5'CAC ACC CTT GGG GAA ACG GGT GGT GCC GCC GG 3'			
FACL19K182A		5'CC ACC GGT TTC CCC GCG GGT GTG ATG TGG CG 3' 5'CG CCA CAT CAC ACC CGC GGG GAA ACC GGT GG 3'			
Hybrid protein					
FACL17N28C		5'GGC GGC GTC TAC CAC ACC GGT GAC CTC GCC TAT CGC 3' 5'GCG ATA GGC GAG GTC ACC GGT GTG GTA GAC GCC GCC 3' 5'GGT CCT TGG CTA AGA ACC GGT GAC TCA GGT TTC GTC3' 5'GAC GAA ACC TGA GTC ACC GGT TCT TAG CCA AGG ACC 3'	and		
FACL17N15C		5'GGC GTC TAC CAC AGT GGA GAT CTC GCC TAT CGC GAC 3' 5'GTC GCG ATA GGC GAG ATC TCC ACT GTG GTA GAC GCC 3' 5'GAC GGC TGG TTC AAG ACC GGA GAT CTC GGT GCG GTG 3' 5'CAC CGC ACC GAG ATC TCC GGT CTT GAA CCA GCC GTC 3'	and		
FACL17N29C		5'GGC GTC TAC CAC AGT GGA GAT CTC GCC TAT CGC GAC 3' 5'GTC GCG ATA GGC GAG ATC TCC ACT GTG GTA GAC GCC 3' 5'TGG CTG CGG ACC GGA GAT CTC GGC GTC ATT TTC GAG G 3' 5'C CTC GAA AAT GAC GCC GAG ATC TCC GGT CCG CAG CCA 3'			
FadD homolog					
Rhodococcus RHA1 ro_4064		5' TT GAA TTC CTA TTC GGA AAC GCT ATC GGG GAA 3' 5' TTG AAT TCG TTC GGA AAC GCT ATC GGG GAA GGC			
Insertion/ Prime deletion		r sequence	Engineered restriction site		
FACL19 _i	5' CGG 5' GCG	TAC CAG CGT CGC TAG CGC CGG GCA GGC GC 3' CCT GCC CGC CGC TAG CGA CGC TGG TAC CG	Nhe I		
	5' GGC 5' CGG	CCC GGG CTA GCA TCG ACC ATC GCA CCG 3' TGC GAT GGT CGA TGC TAG CCC GGG GCC 3'	Nhe I		
FAAL28 _{A0}	5' GCT	AGC GCA CGG CTT CGC ATG GCC GGC GGA 3'	Nhe I		
FAAL28 _{A1}	5' GCT	AGC TAA ACT TTC AGT ATC GAA GTC GAC 3'	Nhe I		
FAAL28 _{A2}	5' GCT	AGC GAC GGT CTC CGG TGG TTG ACC GCC AAA 3'	Nhe I		
FAAL28 _{A3}	5' GGC 5' CAT	GGC GCT ACT AGT TTG ATC AGC TAC ATG 3' GTA GCT GAT CAA ACT AGT AGC GCC GCC 3'	Nhe I		
	5' GGC 5' CAT	GGC GCT ACT AGT TTG ATC AGC TAC ATG 3' GTA GCT GAT CAA ACT AGT AGC GCC GCC 3'	Spe I		
FAAL28	5' CCG 5' GGC	TCG ACT TCG ATG CTA GCA GTT TAT CCG CCG GCC 3' CGG CGG ATA AAC TGC TAG CAT CGA AGT CGA CGG 3'	Nhe I		
	5'CCG 5' GCG	GCC ATG CGA AGA CTA GTG CAG GCG GCG GCG C 3' CCG CCG CCT GCA CTA GTC TTC GCA TGG CCG G 3'	Spe I		
FACL19 _{AS}	5' CTA CCT 5' CTAC CAC	GTG CTG CCA GTG CAG CGA GCT CTG CTT CCT CAG CGG CAG CGG 3' 3 CCG CTG CCG AGG CTG AGG AAG CAG AGC TCG CTG TGG CAG C 3'	Nhe I		

		FAAL28 N-terminal	
		domain SeMet [*]	
Data collection			
Space group		P2(1)2(1)2(1)	
Cell dimensions			
a, b, c (Å)		50.97, 60.74, 136.54	
α, β, γ (°)		90, 90, 90	
	Peak	Inflection	Remote
Wavelength	0.9792	0.9800	0.9776
Resolution (Å)	20.0-2.35	20.0-2.35	20.0-2.35
	(2.39-2.35)	(2.39-2.35)	(2.39-2.35)
$R_{\rm sym}$ or $R_{\rm merge}$	9.3 (43.4)	7.7 (41.4)	8.4 (42.7)
Ι / σΙ	19.72 (3.44)	23.13 (3.54)	21.87 (3.36)
Completeness (%)	99.5 (93.8)	99.3 (93.2)	99.7 (95.9)
Redundancy	7.0 (5.5)	6.9 (5.5)	6.3 (4.9)
Refinement			
Resolution (Å)		20-2.35 (2.43-2.35)	
No. reflections		17986 (1436)	
$R_{ m work}$ / $R_{ m free}$		0.207/0.267	
		(0.286/0.356)	
No. atoms			
Protein		3,231	
Ligand/ion		-	
Water		240	
<i>B</i> -factors			
Protein		31.5	
Ligand/ion		-	
Water		38.3	
R.m.s deviations			
Bond lengths (Å)		0.006	
Bond angles (°)		1.3	

Supplementary Table 4 : Data collection and refinement statistics for FAAL28 N-terminal domain MAD (SeMet) structure.

*Data collected from one crystal. **Highest-resolution shell is shown in parentheses.

The coordinates of FAAL28 N-terminal domain have been deposited in the Protein Data Bank with access code 3E53.

Supplementary method : Synthesis of acyl-AMS analogues (LAMS, HAMS and AAMS)

2', 3', 4'-O,O,O-tris(t-butyldimethylsilyl)adenosine [12].

tert-butyldimethylsilyl chloride (3.5 equiv) in anhydrous DMF was added to a solution of (-) adenosine [10] imidazole (9.0 equivalents) in anhydrous DMF and stirred overnight. The reaction mixture was then diluted with CH_2Cl_2 , washed thrice with saturated NaHCO₃ and dried with MgSO₄, filtered and concentrated. The white residue was characterized as 2', 3', 4'-O,O,O-tris(t-butyldimethylsilyl)adenosine [12]. Compound [12] is identical to the one reported in¹.

ESI-MS m/z of 610.2 $[M+H]^+$ was obtained for a calculated mass of 610.36

2,'3'-bis(t-butyldimethylsilyl)adenosine [13]

A mixture of TFA and H_2O (1:1) was added to a cooled solution of [12]. The reaction mixture was stirred at 0 °C for 5 h. The aqueous layer was extracted with ethyl acetate after adding NaHCO₃ solution. This extract was washed with H_2O and dried with MgSO₄, filtered and concentrated. The white solid obtained was characterized as 2', 3'-O,O-bis(t-butyldimethylsilyl)-O-sulfamoyladenosine [13].

Compound [13] is identical to the one reported in¹.

ESI-MS m/z of 496.3 [M+H]⁺ was obtained for a calculated mass of 496.27

2', 3'-O,O-bis(t-butyldimethylsilyl)-O-sulfamoyladenosine [14]

Bis(tri-butyltin)oxide (3.5 euivalents) was added dropwise to a solution of [13] in anhydrous benzene. The resulting white suspension was refluxed with stirring for 2 h and sulfamoyl chloride (4.5 equivalents) in dioxane was added dropwise to the reaction mixture, stirred for an additional hour at 5 °C. The residue obtained by vacuum concentration was rinsed with hot (40 °C) hexane. The solid was washed with 1 N NH₃ solution in MeOH and dried.

The residue was characterized as 2', 3'- O,O-bis(t-butyldimethylsilyl)-O-(N-dodecanoyl)sulfamoyladenosine [14].

Compound [14] is identical to the one reported in¹.

ESI-MS m/z (pos) 575.3 $[M+H]^+$ for a calculated mass of 575.25

2', 3'-O,O-bis(t-butyldimethylsilyl)-O-(N-dodecanoyl) sulfamoyladenosine [15]

A solution of lauric acid (3.0 equivalents) and 1,1- carbonyldiimidazole (3.6 equivalents) in anhydrous acetonitrile was stirred at 60 °C for 2 h under Argon atmosphere. The reaction mixture was cooled to room temperature. A mixture of [14] and DBU (1.5 equivalents) was then added dropwise to the reaction mixture. The resulting yellow solution was again stirred at 60 °C. After an additional 30 min, the reaction mixture was diluted with H₂O. The aqueous layer was extracted thrice with ethyl acetate, washed with 1N HCl, saturated aqueous solution of NaHCO₃, dried with MgSO₄, filtered and concentrated. The residue was purified by flash chromatography and was characterized as 2° , 3° -O,O-bis(t-butyldimethylsilyl)-O-(N-dodecanoyl)sulfamoyladenosine [15].

ESI-MS m/z (pos) 757.3 $[M+H]^+$ for a calculated mass of 757.41

5'-O-(N-dodecanoylsulfamoyl) adenosine (LAMS) [8]

TBAF (1.0 equivalents in THF, 2.5 equivalents) was added dropwise to a solution of **[15]** in anhydrous THF. The solvent was evaporated after stirring for 30 min. The residue was purified by flash chromatography to yield 5'-O-(N-dodecanoylsulfamoyl) adenosine **[8]** as a white solid.

ESI-MS m/z (pos) 529.7 $[M+H]^+$ for a calculated mass of 529.24

¹**H-NMR** (300 MHz, DMSO-d6) δ 8.4 (s, 1H), δ 8.13 (s, 1H), δ 7.25 (s, 2H), 5.90 (d, 1H, J=5.7), 5.45 (d, 1H, J= 6.0), 5.30 (d, 1H, J=4.2), 4.59 (m, 1H), δ 4.15 – 3.90 (m, 4H, J= 29.7), δ 1.96 (t, 2H), δ 1.22 (m, 20H), δ 0.83 (t, 3H)

¹³C-NMR (75 MHz, DMSO-d6) 178.15, 155.99, 152.57, 149.64, 139.38,118.86, 115.35, 86.79, 82.76, 73.61, 70.90, 67.05, 31.28, 29.07, 29.04, 25.89, 22.07, 13.94

5'-O-(N-hexanoylsulfamoyl) adenosine (HAMS) [7] and 5'-O-(N-icosanoylsulfamoyl) adenosine (AAMS) [9] were synthesized in a manner identical to [8], from [14] using hexanoic acid and icosanoic acid respectively and characterized using mass spectrometry and NMR as follows:

5'-O-(N-hexanoylsulfamoyl) adenosine (HAMS) [7]

ESI-MS m/z (pos) 445.5 [M+H]⁺ for a calculated mass of 445.15 ¹**H-NMR** (300 MHz, CD₃OD) δ 8.68 (s, 1H), δ 8.12 (s, 1H), δ 6.03 (d, 1H), δ 3.9-3.6 (m, 1H), δ 2.18 (t, 2H), δ 1.57 (m, 2 H), δ 1.29 (m, 4H), δ 0.96 (t, 3H),. ¹³**C-NMR** (300 MHz, CD₃OD) δ 156.1, 152.4, 149.9, 140.4, 119.5, 90.8, 80.1, 75.4,73.8, 62.4, 31.9, 29.7, 25.1, 22.8

5'-O-(N-icosanoylsulfamoyl) adenosine (AAMS) [9]

ESI-MS m/z (pos) 641.8 $[M+H]^+$ for a calculated mass of 641.37 ¹**H-NMR** (300 MHz, DMSO-d6) δ 8.30 (s, 1H), 8.13 (s, 1H), δ 7.25 (s, 2H), δ 5.90 (d, 1H J=6.3), δ 5.54 (d, 1H, J= 6.9), δ 5.31(d, 1H, J=6.0), δ 4.59 (m, 1H), δ 4.14-3.97 (m, 10H), δ 3.16 – 3.17 (m, 14H), δ 1.97 (t, 2H), δ 1.43 (s, 3H), δ 1.21 (m, 42 H), δ 0.82 (t, 4H) ¹³**C-NMR** (75 MHz, DMSO-d6) 179.04, 158.14, 157.73, 156.46, 153.06, 150.08, 139.88, 119.66, 119.35, 115.69, 87.38, 74.03, 71.30, 67.72, 31.74, 29.51, 29.47, 26.33, 22.53, 14.37

Reference

1. Ferreras, J. A., Ryu, J. S., Di Lello, F., Tan, D. S. & Quadri, L. E. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. *Nat Chem Biol* **1**, 29-32 (2005).