GENE	FORWARD	REVERSE	REF.
PGC1a	TTGCTAGCGGTCCTCACAGA	GGCTCTTCTGCCTCCTGA	(27)
PGC1β	CGCTCCAGGAGACTGAATCCAG	CTTGACTACTGTCTGTGAGGC	(54)
Tfam	CCAAAAAGACCTCGTTCAGC	ATGTCTCCGGATCGTTTCAC	(82)
PPARγ	GGAAGACCACTCGCATTCCTT	TCGCACTTTGGTATTCTTGGAG	(83)
Nrf2	TTCCTCTGCTGCCATTAGTCAGTC	GCTCTTCCATTTCCGAGTCACTG	(84)
NQO1	TTCTCTGGCCGATTCAGAGT	GGCTGCTTGGAGCAAAATG	(85)
ND1	CCTTCGACCTGACCTGACAGAAGGA	GATGCTCGGATCCATAGGAA	(82)
ND5	GCTCTACCTCACCATCTCTTGC	TCCAGTATGCTTACCTTGTTACG	(82)
COX I	GGTCAACCAGGTGCACTTTT	TGGGGCTCCGATTATTAGTG	(82)
COX II	TGAAGACGTCCTCCACTCATGA	GCCTGGGATGGCATCAGTT	(83)
COX III	GCAGGATTCTTCTGAGCGTTCT	GTCAGCAGCCTCCTAGATCATGT	(83)
SOD1	CAGGACCTCATTTTAATCCTCAC	CCCAGGTCTCCAACATGC	(85)
SOD2	CACAAGCACAGCCTCCCAG	CGCGTTAATGTGTGGGCTCC	(70)
Catalase	CAGCGACCAGATGAAGCA	CTCCGGTGGTCAGGACAT	(85)
Gpx-1	ACAGTCCACCGTGTATGCCTTC	CTCTTCATTCTTGCCATTCTCCTG	(85)
HO-1	GGTCAGGTGTCCAGAGAAGG	CTTCCAGGGCCGTGTAGATA	(85)
S18	GTTGGTGGAGCGATTTGTCTGG	AGGGCAGGGACTTAATCAACGC	(82)

Supplemental Table 1: Primer sequences for qRT-PCR

- Noack, H., Bednarek, T., Heidler, J., Ladig, R., Holtz, J. and Szibor, M. (2006) TFAM-dependent and independent dynamics of mtDNA levels in C2C12 myoblasts caused by redox stress. *Biochim. Biophys. Acta*, **1760**, 141-150.
- 83. Uldry, M., Yang, W., St-Pierre, J., Lin, J., Seale, P. and Spiegelman, B.M. (2006)
 Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and
 brown fat differentiation. *Cell Metab.*, **3**, 333-341.
- Pehar, M., Vargas, M.R., Robinson, K.M., Cassina, P., Diaz-Amarilla, P.J.,
 Hagen, T.M., Radi, R., Barbeito, L. and Beckman, J.S. (2007) Mitochondrial

superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis. *J. Neurosci.*, **27**, 7777-7785.

85. Panee, J., Liu, W., Nakamura, K. and Berry, M.J. (2007) The responses of HT22 cells to the blockade of mitochondrial complexes and potential protective effect of selenium supplementation. *Int. J. Biol. Sci.*, **3**, 335-341.

SUPPLEMENTAL FIGURE 1: Staurosporine increases cell death in MN-1 cells

Staurosporine (STS), an apoptotic inducer was used as a positive control for caspase 3 activity in the fluorometric assay (for Fig. 1C). Parental MN-1 cells were exposed to vehicle control or STS and treated with the pan-caspase inhibitor, z-VAD. STS resulted in a 5-fold increase in caspase 3 activity that was blocked with z-VAD.

SUPPLEMENTAL FIGURE 2: Reduced SOD2 protein in MN-1 cells and mouse

tissues

AR-24Q and AR-65Q MN-1 cells (A) were either exposed to vehicle control or R1881 for 48 h. The cells were immunostained for SOD2 (FITC labeled; green), and Hsp60 (Texas-red labeled; red) with the nucleus counterstained with DAPI (blue). The images show decreased levels of SOD2 and Hsp60 in the AR-65Q MN-1 cells. (B-C) Representative immunoblots of 3-month old mouse muscle (B) and spinal cord (C) show decreased levels of SOD2. The densitometric quantitation is shown in the histograms (N = 5 for each genotype per tissue). The error bars indicate SEM; $*p \le 0.05$.

B Muscle at manifesting stage C Spinal cord at manifesting stage

