
Additional file 1: Description of the protein complex data

The complexes collected for this study represent a biased subset of mammalian complexes taken from a 
variety of species (Figure S1). A large proportion of the complexes localize to the nucleus (Ruepp, et 
al., 2008). We analyzed the entire set of complexes (ALL) and those found in human (HUMAN).  A 
summary of the complex datasets can be found in Table S1, including the major purification methods 
used to derive them.  In some cases, we also analyzed yeast complexes (YEAST) deposited at MIPS.

Figure S1: Species distribution of the mammalian complexes
Most complexes in the data are of human origin.  

ALL HUMAN YEAST

Number of Complexes 2706 1926 1142

Number of Proteins 4542 2851 2755

Mean (Median) number of 
Proteins per Complex

4.5 (3) 4.6 (3) 7.8 (4)

Top purification methods CI – 30.6%
AB – 8.8%
AF – 8.7%
PD – 5.2%
CS – 4.5%
FW – 2.3%

CI – 23.9%
AB – 9.1%
AF  – 8.8%
AT – 7.8%
CS – 4.8%
PD – 3.9%

CI – 30.1%

% of complexes associated with > 
1 purification method

18% 16% Not available

Table S1. Summary of analyzed complex datasets

The first three rows shows the number of unique complexes, the number of unique proteins and the mean (median) number of proteins per 
complex in each dataset. The top 7 methods used to purify the complexes is listed for each mammalian complex dataset along with the 
following code: CI – coimmunoprecipitation, AB - antibaitcoimmunoprecipitation, AT - antitag immunoprecipitation, PD - pulldown, AF 
- affinitychromatography, CS - cosedimentationthroughdensitygradients, MS - molecularsieving, FW - farwesternblotting
Coimmunoprecipitation is the most common method annotated for the derivation of the complexes.
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Completeness of the complex data

By randomly sampling sets of complexes from ones we collected and plotting the number of proteins 
versus the number of complexes, one can estimate the number of complexes in an organism according 
to a model. Estimates based on 3 models are reported here: Exponential (Y = Aeb), Power (Y = Axb) 
and Quadratic (Y = Ax2 + Bx) where Y = the number of complexes, x = the number of proteins and A, 
B, b are real constants.  We assume that humans have 29000 proteins and yeasts have 6086 proteins. 
For both human and yeast, a quadratic model fits our data the best. However, because of possible bias 
in our data, we do not know which estimate is the closest to the actual number of possible complexes in 
the respective organisms.  Nevertheless, the numbers give possible estimates of the completeness of the 
complexes analyzed which might help guide future research.

Organism
(# of complexes we collected)

Model Estimated # of 
different complexes

R2 for model fit

Human
(1926)

Y = 48.663e0.0017x 1.25 x 1023 0.9

Y = 0.0442x1.3408 5100 0.95

Y = 0.004x2 – 0.0566x 3.3 million 0.98

Yeast
(MIPS = 1142, 
MIPS + Friedel et al. = 2025)

Y = 30.85e0.0017x 960 000 0.91

Y = 0.038x1.2908 2900 0.9

Y = 0.0002x2 – 0.0595x 7200 0.97

The estimated number of complexes for human and yeast are shown in the third column, extrapolated from the plots above. 
The actual number of human proteins may be much higher than 29000 due to additional presence of isoforms.  More 
accurate models may similarly be generated, taken into account bias in our data.
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The Random Complex Data

Random complexes were generated for the purpose of providing a simple screen against spurious 
trends (ex. Fig. 3C,E) not related to the non-stochastic organization of protein complexes.  
Random complexes generated in different ways allows one to infer different conclusions when 
compared to real complexes.  If a certain property characterizes both random and real complexes, then 
significant differences between the two groups of complexes cannot be attributed to the influence of 
that property alone.  If a certain property (ex. randomness) characterizes random complexes but is not 
found in real complexes, then one can hypothesize that trends significant only to real complexes are 
associated with either the absence of that property (ex. randomness) and/or the presence of another 
property specific to real complexes (ex. non-stochastic organization).  Below we list two random 
models tested in the course of this study:

Random model 1: picking proteins with replacement
In the main text of this study we generated random complexes by picking the same number of unique 
proteins as found in the real complex dataset. Since a protein can participate in multiple complexes, we 
allowed replacement when proteins were randomly picked. In this way, we simulate greater neutrality 
in the reuse of proteins in complexes.  Characteristics of annotated complexes not found in such 
random complexes may be attributed to greater restriction to protein reuse in annotated complexes 
and/or  the randomness specific to these random complexes.

Random model 2: picking proteins without replacement
Generating random complexes without adding/subtracting copies of proteins in the network has been 
commonly accomplished by degree-preserving rewiring, first introduced by Maslov and Sneppen 
(Science :296(5569):910–913, 2002). Here, the protein-complex network is interpreted as a bipartite 
graph, i.e. a graph with two distinct sets of nodes (protein nodes and complex nodes), where edges 
between nodes are only allowed between different kinds. In this context, the two node sets consist of 
proteins and complexes, and an edge between a protein and a complex indicates membership of a 
particular protein with a particular complex.  In this random model, the number of complexes, the 
number of unique proteins in each complex and complex participation for each protein (the degree of a 
protein) is kept the same as in the annotated complexes. The bipartite representation of the complex 
network is maintained. 

The bipartite randomization can be easily achieved: In every randomization step we randomly pick two 
edges, and exchange their endpoints of one type (either proteins or complexes) without creating 
multiple edges. This rewiring procedure leads to a loss of degree-correlations between first and second 
neighbors. Hence, we can observe the degree of randomization by the course of these quantities over 
the process. This also tells us how many randomization steps we need to perform. In practice, we find 
that degree-correlations vanish after around one randomization step per edge. So, for our analyses we 
used five times this number.

Since complex participation is maintained in this random model, we do not observe a difference 
between Figure 3F and Figure S1cB.  Like Figure 3C (Random model 1 complexes), we also are not 
likely to observe a trend between mean dN/dS values with increasing complex complexity (Figure 
S1cA), suggesting that the level of protein reuse restriction cannot solely explain the trend between 
evolutionary rate and complex complexity. 
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Figure S1c: Model 2 random human complexes where generated.  (A) The number of unique proteins in each human 
complex is plotted against the evolutionary rate of associated genes (dN/dS values of human-mouse orthologs). (B) The 
same plot as in Figure 3F is observed.  

Summary
In both random models, trends between complex complexity and mean dN/dS values were not likely 
observed.  We suggest causes associated with non-stochastic protein complex organization is a major 
reason for the trend observed in Figure 3D.
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