Ag-Catalyzed Diastereo- and Enantioselective Vinylogous Mannich Reactions of α -Ketoimine Esters. Development of a Method and Investigation of its Mechanism

Laura C. Wieland, Erika Vieira, Marc L. Snapper*, and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION, PART 1

Table of Contents	Page
General	S2
Analytical data for ketoimines 4a-m,15	S2
Representative procedure for Ag-catalyzed asymmetric vinylogous Mannich reactions	S5
Analytical data for Mannich products 7a, 8a, 7b-h, 8i, 7j-m, 17, 18	S 5
Analytical data for ligand 16	S17
Procedures and analytical data for unprotected amine product and reduction products 10a , 10m , 11	S18
Procedure and analytical data for 1-Ag complexes	S20
X-ray Crystallographic Data for α -ketoimine ester 4a	S21
X-ray Crystallographic Data for 10m	S 31
X-ray Crystallographic Data for 1-Ag complex 10	S42
X-ray Crystallographic Data for 17	S66

General. Infrared (IR) spectra are recorded on a Perkin Elmer 781 spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m) or weak (w). ¹H NMR spectra are recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuteration as the internal standard (CDCl₃: δ 7.26). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), and coupling constants. ¹³C NMR spectra are recorded on a Varian Unity INOVA 400 (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16 ppm). ³¹P NMR spectra are recorded on a Varian Unity INOVA 400 (162 MHz) with complete proton decoupling. Chemical shifts are reported in ppm (H_3PO_4 : $\delta 0.00$ ppm). Enantiomeric ratios were determined by analytical liquid chromatography (HPLC) Shimazu chromatograph (Chiral Technologies Chiralpak AS (4.6 x 250 mm), Chiral Technologies Chiralcel OD (4.6 x 250 mm) or Chiral Technologies Chiralpak AD (4.6 x 250 mm)) in comparison with authentic racemic materials. High-resolution mass spectrometry is performed on a Micromass LCT ESI-MS (positive mode)) at the Mass Spectrometry Facility (Boston College). Optical rotation values are recorded on a Rudolph Research Analytical Autopol IV polarimeter. Unless otherwise stated, all reactions are conducted under an inert atmosphere of nitrogen. Tetrahydrofuran is purified by distillation from sodium benzophenone ketal immediately prior to use. All work-up and purification procedures are carried out with reagent solvents in air. All solvents are purchased from Doe and Ingalls. 2-(Trimethylsilyloxy)furan and AgOAc were purchased from Aldrich and used as received. a-Ketoesters were purchased from commercial sources or synthesized from commercially available starting materials through known methods.¹ The corresponding ketoimines are synthesized using known methods.² EDC•HCl, HOBt•H₂O, trifluroacetic acid, panisidine, Boc-protected amino acids and 2-(diphenylphosphino)benzaldehyde are purchased from commercial sources and used without further purification. Phosphino amino-acid based ligand 1 was prepared as previously reported.³

Analytical Data for Substrates 4a-m, 15:

4a: 10:1 mixture of E/Z isomers. mp = 106–107 °C. IR (neat): 3101 (w), 3008 (w), 2945 (w), 2911 (w), 2865 (w, br), 2835 (w), 1729 (s), 1623 (s), 1585 (s), 1514 (s), 1484 (m), 1451 (m), 1409 (m), 1350 (s), 1336 (m), 1303 (s), 1260 (s), 1231 (s), 1181 (m), 1096 (m), 1020 (m), 1007 (m), 797 (m), 687 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃ major isomer): δ 7.90 (2H, d, J = 7.3

a) Wasserman, H. H.; Ho, W. B. J. Org. Chem. 1994, 59, 4364-4366; b) Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A. Tetrahedron 1996, 52, 13513–13520; c) Rodriguez, A.; Nomen, M.; Spur, B. W. Tetrahedron Lett, 1998, 39, 8563–8566; d) Domagala, J. M. Tetrahedron Lett. 1980, 21, 4997–5000.

^{(2) (}a) Palacios, F.; Vicario, J.; Aparicio, D. J. Org. Chem. 2006, 71, 7690-7696; b) Niwa, Y.; Shimizu, M. J. Am. Chem. Soc. 2003, 125, 3720-3721.

⁽³⁾ Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem. Int., Ed. 2006, 45, 7230-7233.

Hz), 7.85 (1H, dd, J = 8.8, 2.2 Hz), 7.77 (1H, d, J = 2.2 Hz), 7.55 (1 H, t, J = 7.3 Hz), 7.48 (2H, t, J = 7.3 Hz), 6.89 (1H, d, J = 8.4 Hz), 3.89 (3H, s), 3.66 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 161.8, 150.1, 145.9, 145.6, 133.3, 132.8, 129.1, 128.8, 119.5, 117.0, 106.7, 56.5, 52.4. HRMS Calcd for C₁₆H₁₅N₂O₅ (M + H): 315.09810; Found: 315.09849.

4b: 5:1 mixture of *E*/*Z* isomers. mp = 104–105 °C. IR (neat): 3084 (w, br), 3008 (w, br), 2957 (w, br), 2839 (w, br), 1742 (s), 1641 (m), 1585 (m), 1523 (s), 1354 (s), 1320 (m), 1253 (s), 1096 (m), 1028 (m), 796 (m), 670 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.86 (1H, dd, *J* = 8.4, 2.0 Hz), 7.77 (1H, d, *J* = 2.0 Hz), 7.51 (1H, s), 7.38 (2 H, d, *J* = 4.8 Hz), 7.13-7.08 (1H, m), 6.90 (1H, d, *J* = 8.4 Hz), 3.91 (3H, s), 3.87 (3H, s), 3.66 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 161.7, 160.2, 150.1, 145.9, 145.6, 134.6, 130.0, 121.7, 119.5, 119.3, 117.0, 112.8, 106.7, 56.5, 55.7, 52.4. HRMS Calcd for C₁₇H₁₇N₂O₆ (M + H): 345.10866; Found: 345.10892.

4c: 13:1 mixture of *E*/*Z* isomers. mp = 106–108 °C. IR (neat): 3111 (w, br), 3015 (w), 2955 (w), 2843 (w), 1725 (s), 1615 (s), 1579 (s), 1507 (s), 1487 (m), 1450 (m), 1412 (m), 1342 (s), 1318 (s), 1276 (m), 1250 (s), 1223 (s), 1175 (s), 1091 (m), 1024 (s), 938 (m), 866 (m), 830 (m), 794 (m), 714 (m), 682 (m), 665 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.94 (1H, s), 7.87 (1H, dd, *J* = 8.4, 2.2 Hz), 7.78 (1H, d, *J* = 2.2 Hz), 7.74 (1 H, d, *J* = 7.7 Hz), 7.53 (1H, d, *J* = 8.4 Hz), 7.42 (1H, t, *J* = 8.4 Hz), 6.89 (1H, d, *J* = 8.4 Hz), 3.91 (3H, s), 3.67 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.5, 160.4, 150.0, 145.8, 145.4, 135.3, 135.1, 132.7, 130.3, 128.6, 127.1, 119.4, 117.0, 106.7, 56.5, 52.6. HRMS Calcd for C₁₆H₁₄ClN₂O₅ (M + H): 349.05912; Found: 349.05871.

4d: 10:1 mixture of *E/Z* isomers. mp = 154–155 °C. IR (neat): 3352 (w), 3088 (w), 3007 (w), 2971 (w), 2834 (w), 2657 (w, br), 1732 (s), 1626 (s), 1581 (s), 1566 (m), 1505 (s), 1489 (m), 1462 (m), 1400 (m), 1309 (s), 1253 (m), 1224 (s), 1176 (m), 1123 (m), 1091 (m), 1069 (m), 1028 (m), 1005 (m), 859 (m), 687 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.86 (1H, dd, *J* = 8.4, 2.2 Hz), 7.78-7.76 (3H, m), 7.63 (2H, d, *J* = 8.8 Hz), 6.88 (1H, d, *J* = 8.4 Hz), 3.90 (3H, s), 3.66 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 160.5, 150.0, 145.7, 145.6, 139.1, 131.9, 130.2, 129.3, 119.4, 117.0, 106.7, 56.5, 52.6. HRMS Calcd for C₁₆H₁₄BrN₂O₅ (M + H): 393.00861; Found: 393.00875.

4e: 10:1 mixture of *E/Z* isomers. mp = 166–169 °C. IR (neat): 3070 (w), 3004 (w), 2959 (w), 2915 (w), 2833 (w, br), 2655 (w), 1730 (s), 1624 (m), 1579 (m), 1504 (s), 1487 (m), 1462 (m), 1395 (m), 1309 (s), 1251 (m), 1223 (s), 1175 (s), 1123 (m), 1092 (m), 1056 (m), 1026 (m), 1001 (s), 859 (m), 841 (m), 829 (m), 794 (m), 743 (m), 721 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.88-7.84 (3H, m), 7.78 (1H, d, *J* = 2.2 Hz), 7.62 (2H, d, *J* = 8.4 Hz), 6.88 (1 H, d, *J* = 8.4 Hz), 3.90 (3H, s), 3.66 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 160.9, 150.0,

145.7, 145.6, 138.3, 132.9, 130.2, 119.4, 117.0, 106.8, 100.2, 56.5, 52.5. HRMS Calcd for $C_{16}H_{14}IN_2O_5$ (M + H): 440.99474; Found: 440.99559.

4f: 10:1 mixture of *E*/*Z* isomers. mp = 148–151 °C. IR (neat): 3101 (w), 3006 (w, br), 2866 (w), 2835 (w), 1730 (s), 1601 (m), 1578 (m), 1561 (m), 1488 (s), 1410 (m), 1312 (s), 1231 (m), 1191(m), 1173 (m), 1128 (m), 1091 (m), 1022 (m), 1005 (m), 873 (m), 843 (m), 793 (m), 736 (m), 536 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.87-7.77 (4H, m), 7.51 (2H, d, *J* = 8.1 Hz), 6.88 (1H, d, *J* = 8.4 Hz), 3.90 (3H, s), 3.66 (3H, s), 1.35 (9H, s). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 161.6, 156.6, 150.2, 146.2, 145.4, 130.6, 128.7, 126.1, 119.5, 117.0, 106.7, 56.5, 52.3, 35.3, 31.3. HRMS Calcd for C₂₀H₂₃N₂O₅ (M + H): 371.16070; Found: 371.16194.

4g: 11:1 mixture of *E*/*Z* isomers. mp = 128–130 °C. IR (neat): 3118(w), 3012 (w), 2958 (w), 2839 (w), 2653 (w, br), 2514 (w), 1742 (s), 1641 (s), 1582 (s), 1523 (s), 1489 (m), 1464 (m), 1417 (m), 1328 (s), 1316 (m), 1256 (s), 1223 (s), 1181 (m), 1131 (m), 1067 (m), 1028 (m), 1007 (m), 910 (m), 873 (m), 856 (m), 801 (m), 742 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 8.02 (2H, d, *J* = 8.4 Hz), 7.86 (1H, dd, *J* = 8.4, 2.0 Hz), 7.78 (1H, d, *J* = 2.0 Hz), 7.73 (2H, d, *J* = 8.4 Hz), 6.90 (1H, d, *J* = 8.4 Hz), 3.90 (3H, s), 3.69 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.3, 160.4, 149.8, 145.9, 145.3, 136.6, 133.5 (q, *J* = 32.6 Hz), 129.2, 125.9 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 217 Hz), 119.4, 117.0, 106.8, 56.5, 52.6. HRMS Calcd for C₁₇H₁₄F₃N₂O₅ (M + H): 383.08548; Found: 383.08515.

4h: 20:1 mixture of *E/Z* isomers. mp = 128–129 °C. IR (neat): 3109 (w), 3063 (w), 3017 (w), 2953 (w), 2854 (w, br), 2839 (w), 1742 (s), 1619 (s), 1582 (s), 1518 (s), 1493 (m), 1468 (m), 1412 (m), 1350 (s), 1312 (m), 1257 (s), 1223 (m), 1168 (m), 1126 (m), 1096 (m), 1033 (m), 1016 (m), 868 (m), 797 (m), 733 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 8.25 (1H, s), 8.12 (1H, dd, *J* = 8.6, 1.4 Hz), 7.94-7.87 (4H, m), 7.80 (1H, d, *J* = 2.0 Hz), 7.61-7.53 (2H, m), 6.95 (1H, d, *J* = 8.4 Hz), 3.91 (3H, s), 3.72 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 161.8, 150.2, 146.1, 145.6, 135.5, 132.9, 130.8, 129.5, 129.1, 128.7, 128.1, 127.2, 124.1, 119.5, 117.0, 106.8, 56.5, 52.5. HRMS Calcd for C₂₀H₁₇N₂O₅ (M + H): 365.11375; Found: 365.11481.

4i: 5:1 mixture of E/Z isomers. mp = 102–106 °C. IR (neat): 3097 (w), 3012 (w), 2953 (w), 2939 (w), 1738 (s), 1653 (m), 1581 (m), 1518 (s), 1489 (m), 1463 (m), 1409 (m), 1354 (s), 1253 (s), 1215 (m), 1092 (m), 1058 (m), 1025 (m), 915 (m), 860 (m), 810 (m), 742 (m), 645 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.77 (1H, dd, J = 8.8, 2.4 Hz), 7.63 (1H, d, J = 2.4 Hz), 7.53 (1H, dd, J = 8.0, 1.6 Hz), 7.21-7.13 (2H, m), 6.93 (1H, dd, J = 7.2, 2.0 Hz), 6.81 (1H, d, J = 8.4 Hz), 3.97 (3H, s), 3.84 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 162.4, (161.5), (161.2), 149.0, (148.3), 145.9, (145.4), 144.1, (137.2), 135.2, (133.3), 132.8, (132.4), (132.0),

131.5, 129.2, (128.0), 127.4, (122.3), 121.4, 119.4, (117.2), 116.8, (106.8), 106.7, (56.5), 56.3, 53.9, (53.0). HRMS Calcd for $C_{16}H_{14}N_2O_5Br$ (M + H): 393.00861; Found: 393.01005.

4j: 2.5:1 mixture of *E*/*Z* isomers. mp = 98–100 °C. IR (neat): 3147 (w), 3118 (w), 2953 (w), 2835 (w), 1742 (s), 1628 (m), 1518 (s), 1472 (s), 1354 (s), 1337 (s), 1257 (s), 1239 (m), 1096 (m), 1045 (s), 1016 (m), 1155 (m), 805 (m), 762 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, mixture of isomers): δ 7.84-7.81 (1 + [0.4]H, m), [7.72 (0.4H, s)], 7.71 (1H, m), 7.65 (1H, s), [7.28 (0.4H, s)], 7.12 (1H, d, *J* = 3.2 Hz), [7.03 (0.4H, d, *J* = 2.2 Hz)], 6.92 (1H, d, *J* = 8.8 Hz), [6.86 (0.4H, d, *J* = 8.4 Hz)], 6.56 (1H, t, *J* = 1.6 Hz), [6.41 (0.4H, s)], [3.97 (1.2H, s)], 3.84 (3H, s), [3.75 (1.2H, s)], 3.65 (3H, s). ¹³C NMR (100 MHz, CDCl₃, mixture of isomers): δ [163.7], 161.8, 150.2, 149.5, 149.2, [148.6], [147.9], 147.5, [146.8], [146.5], [145.9], 145.4, 145.3, [145.1], [120.6], 120.3, 119.3, [118.8], [117.2], 117.1, 112.9, [112.5], 106.6, [106.6], 56.4, [56.4], [53.7], 52.7. HRMS Calcd for C₁₄H₁₃N₂O₆ (M + H): 305.07736; Found: 305.07696.

4k: 8:1 mixture of *E/Z* isomers. mp = 153–154 °C. IR (neat): 3085 (w), 2960 (w), 2916 (w), 2848 (w), 1734 (s), 1617 (s), 1581 (m), 1511 (s), 1486 (m), 1465 (m), 1406 (m), 1345 (s), 1288 (m), 1226 (s), 1170 (s), 1125 (m), 1091 (m), 1023 (s), 860 (m), 803 (m), 731 (m), 687 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.96 (1H, s), 7.86 (1H, dd, *J* = 8.4, 2.2 Hz), 7.77 (1H, d, *J* = 2.2 Hz), 7.69 (1H, d, *J* = 4.8 Hz), 7.42-7.38 (1H, m), 6.90 (1H, d, *J* = 8.8 Hz), 3.89 (3H, s), 3.65 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.5, 156.0, 149.7, 145.9, 145.4, 137.3, 131.8, 127.1, 127.0, 119.8, 117.1, 106.7, 56.4, 52.5. HRMS Calcd for C₁₄H₁₃N₂O₅S (M + H): 321.05452; Found: 321.05540.

4m: 11:1 mixture of *E/Z* isomers. mp=132–134 °C. IR (neat): 3354 (w), 3091 (w), 3009 (w), 2957 (w), 2835 (w, br), 1734 (s), 1629 (s), 1581 (s), 1507 (s), 1493 (m), 1461 (m), 1405 (m), 1339 (s), 1310 (m), 1253 (m), 1224 (s), 1176 (m), 1090 (s), 1029 (m), 1008 (m), 858 (m), 842 (m), 796 (m), 766 (m), 744 (m), 727 (m), 671 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.85-7.77 (4H, m), 7.44 (2H, d, *J* = 8.4 Hz), 6.88 (1 H, d, *J* = 8.4 Hz), 3.89 (3H, s), 3.66 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 160.6, 149.9, 145.7, 145.6, 132.32, 132.26, 130.2, 127.7, 119.4, 117.0, 106.7, 56.5, 52.5. HRMS Calcd for C₁₆H₁₄ClN₂O₅ (M + H): 349.05912; Found: 349.05911.

15: IR (neat): 3001 (w), 2951 (w), 2837 (w), 1722 (s), 1656 (m), 1591 (m), 1506 (m), 1489 (s), 1454 (m), 1436 (m), 1367 (w), 1314 (m), 1275 (m), 1244 (s), 1224 (m), 1193 (m), 1138 (s), 1113 (s), 944 (m), 853 (m), 812 (m), 77 (m), 744 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃), major isomer: δ 7.05 (1H, ddd, J = 7.6, 7.6, 1.6 Hz), 6.90-6.85 (2H, m), 6.89 (1H, dd, J = 7.6, 1.6 Hz), 3.85 (3H, s), 3.72 (3H, s), 1.98 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 162.1, 148.3, 138.1, 126.0, 120.9, 120.2, 111.6, 55.7, 53.2, 17.6. HRMS Calcd for C₁₁H₁₄NO₃: 208.09737; Found: 208.09785.

Representative experimental procedure for gram-scale Ag-catalyzed addition of vinylogous silvl enol ether 2 to an α -ketoimine ester: A flame-dried 100 mL round bottom flask was charged with AgOAc (117 mg, 0.700 mmol), 1 (320 mg, 0.636 mmol), and 4a (2.00 g, 6.36 mmol). The flask was sealed with a septum and purged with a N2 atmosphere. Freshly distilled THF was added (64 mL) through a syringe, followed by *i*-PrOH (487 µL, 0.636 mmol), and the resulting homogenous yellow solution was allowed to cool to -78 °C (dry ice/acetone) with stirring. 2-Trimethylsiloxyfuran (2) (2.66 mL, 13.4 mmol) was added, and the resulting solution was kept at -78 °C for 15 h before addition of HOAc (765 µL, 13.4 mmol) in MeOH (10 mL). The resulting solution was allowed to stir at -78 °C for an additional three hours, after which it was allowed to warm to 22 °C. A saturated aqueous solution of NaHCO₃ was added, after which the aqueous layer was washed with EtOAc (3 x 100 mL), dried over MgSO₄, and the volatiles were removed in vacuo. The unpurified residue (typically yellow oil) was a 20:1 mixture of 7a:8a by ¹H NMR analysis, which can be separated by silica gel chromatography (3:1 petroleum ether: EtOAc) to furnish pure 7a as a yellow solid (2.24 g, 5.62 mmol, 88% yield, 92% ee of 7a), which was recrystallized from MeOH to afford 7a (yellow crystals) in >98% ee (1.53 g, 3.84 mmol, 68% yield, >98% ee).

7a: IR (neat): 3396 (w, br), 1791 (m), 1766 (s), 1595 (m), 1532 (m), 1501 (m), 1338 (m), 1293 (s), 1256 (m), 1231 (m), 1092 (m), 734 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (1H, d, J = 2.4 Hz), 7.52 (1H, ddd, J = 6.8, 2.4, 0.4 Hz), 7.50 (1H, dd, J = 5.8, 1.6 Hz), 7.46-7.39 (5 H, m), 6.21 (1H, br s), 6.11 (1H, dd, J = 2.0, 1.6 Hz), 6.04 (1H, dd, J = 5.6, 2.0 Hz), 5.84 (1H, d, J = 8.8 Hz), 3.98 (3H, s), 3.80 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 170.6, 152.4, 146.4, 140.6, 138.7, 133.5, 129.7, 129.6, 127.0, 124.0, 118.1, 111.4, 105.1, 84.7, 68.6, 56.4, 54.1. HRMS Calcd for C₂₀H₁₈N₂O₇ [M + H]: 399.11923; Found: 399.11946. [α]²⁶_D = +165.45 (c = 1.00, CHCl₃) for a 92% ee sample. The enantiomeric purity of this compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): $t_{\rm R}$ of **7a**: 16 min (major) and 24 min (minor); $t_{\rm R}$ of **8a**: 19 min and 21 min.

8a: IR (neat): 3390 (w, br), 3100 (w, br), 2961 (w, br), 1791 (m), 1766 (s), 1596 (m), 1527 (m), 1501 (m), 1338 (m), 1294 (s), 1262 (m), 1161 (m), 1098 (m), 733 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (1H, d, J = 2.4 Hz), 7.53-7.50 (2H, m), 7.49 (1H, dd, J = 9.2, 2.4 Hz), 7.41-7.39 (3H, m), 7.30 (1H, dd, J = 6.0, 1.6 Hz), 6.26 (1H, br s), 6.17 (1H, dd, J = 6.0, 2.0 Hz), 6.05 (1H, d, J = 9.2 Hz), 5.93 (1H, dd, J = 1.8, 1.8 Hz), 3.89 (3H, s), 3.77 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 170.2, 152.4, 146.4, 140.5, 138.8, 134.0, 129.54, 129.49, 127.6, 123.9, 118.3, 112.6, 104.9, 85.9, 69.2, 56.4, 54.0. HRMS Calcd for C₂₀H₁₈N₂O₇Na : [M + Na] 421.1012; Found: 421.1009. [α]²⁶_D = +34.99 (c = 1.00, CHCl₃) for a 75% ee sample. The enantiomeric purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): t_R of **8a**: 19 min and 21 min; t_R of **7a**: 16 min (major) and 24 min (minor).

7b: IR (neat): 3389 (w, br), 3096 (w, br), 2954 (w, br), 2835 (w, br), 1795 (m), 1758 (s), 1596 (s), 1521 (s), 1503 (m), 1334 (m), 1303 (s), 1260 (m), 1228 (m), 1153 (w), 1098 (m), 1029 (w), 736 (w), 662 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (1H, d, J = 2.2 Hz), 7.53 (1H, dd, J = 8.8, 2.4 Hz), 7.50 (1H, dd, J = 5.7, 1.7 Hz), 7.34 (1H, t, J = 7.9 Hz), 7.02 (1H, ddd, J = 7.7, 1.1, 0.7 Hz), 6.98 (1H, t, J = 2.2 Hz), 6.93 (1H, ddd, J = 8.3, 2.5, 0.7 Hz), 6.19 (1H, br s), 6.10 (1H, t, J = 1.8 Hz), 6.03 (1H, dd, J = 5.9, 2.2 Hz), 5.86 (1H, d, J = 8.8 Hz), 3.98 (3H, s), 3.80 (3H, s), 3.77 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 170.5, 160.5, 152.4, 146.4, 140.7, 138.7, 135.2, 130.8, 123.9, 119.0, 118.1, 114.3, 113.5, 111.4, 105.1, 84.7, 68.5, 56.5, 55.6, 54.1. HRMS Calcd for C₂₁H₂₁N₂O₈ [M + H]: 429.1297; Found: 429.1302. [α]²³_D = +75.26 (c = 1.00, CHCl₃) for a 93% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): $t_{\rm R}$ of **7b**: 19 min (major) and 30 min (minor); $t_{\rm R}$ of **8b:** 22 min (major) and 28 min (minor).

2	34.19	9638127	49.156	2	30.18	1165924	3.746
_	00	0000121	10.100	-	00.10	110000	0.1.10

7c: IR (neat): 3383 (w, br), 3100 (w, br), 3018 (w, br), 2955 (w, br), 2943 (w, br), 2848 (w, br), 1784 (s), 1759 (s), 1590 (s), 1527 (s), 1507 (m), 1338 (m), 1239 (s), 1256 (m), 1231 (m), 1092 (m), 1029 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.65 (1H, d, *J* = 2.6 Hz), 7.56 (1H, dd, *J* = 9.2, 2.6 Hz), 7.52-7.50 (1H, m), 7.46 (1H, dd, *J* = 5.9, 1.5 Hz), 7.41-7.33 (3H, m), 6.18 (1H, br s), 6.10 (1H, dd, *J* = 5.7, 1.8 Hz), 6.01 (1H, t, *J* = 1.8 Hz), 5.85 (1H, d, *J* = 9.2 Hz), 4.00 (3H, s), 3.80 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.0, 152.0, 146.5, 140.1, 139.0, 135.70, 135.67, 130.8, 129.9, 127.5, 125.5, 124.3, 118.0, 111.4, 105.2, 84.4, 68.3, 56.5, 54.3. HRMS Calcd for C₂₀H₁₇N₂O₇ClNa [M + Na]: 455.0609; Found: 455.0622. [α]²⁵_D = +106.65 (*c* = 1.00, CHCl₃) for an 88% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 90:10 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7c**: 42 min (major) and 80 min (minor); *t*_R of **8c**: 46 min (major) and 66 min (minor).

7d: IR (neat): 3386 (w, br), 3094 (w, br), 3019 (w, br), 2926 (w, br), 2846 (w, br), 1791 (m), 1753 (m), 1591 (m), 1523 (m), 1505 (m), 1338 (m), 1288 (s), 1232 (m), 1095 (m), 741 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (1H, d, J = 2.6 Hz), 7.56-7.52 (3H, m), 7.46 (1H, dd, J = 5.9, 1.5 Hz), 7.35 (2 H, ddd, J = 9.2, 2.3, 2.3 Hz), 6.17 (1H, br s), 6.08 (1H, dd, J = 5.8, 1.8 Hz), 6.00 (1H, t, J = 1.8 Hz), 5.86 (1H, d, J = 9.2 Hz), 3.99 (3H, s), 3.79 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.1, 152.1, 146.5, 140.1, 139.0, 132.8, 132.5, 129.0, 124.3, 124.0, 118.1, 111.5, 105.2, 84.3, 68.3, 56.5, 54.2. HRMS Calcd for C₂₀H₁₇N₂O₇BrNa [M + Na]: 499.0117; Found: 499.0121. $[\alpha]^{26}_{D} = +67.8$ (c = 1.00, CHCl₃) for a 94% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7d**: 21 min (major) and 57 min (minor).

1	20.8	2641062	50.596		Time			
2	56.1	2578827	49.404	1	21.34	8461288	96.822	
pe	ak at 28 mir	n is rac-syn- 8	d	2	58.39	277741	3.178	

7e: IR (neat): 3387 (w, br), 1789 (m), 1758 (s), 1593 (m), 1526 (m), 1295 (s), 1231 (m), 1096 (m), 1028 (m), 746 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (2H, ddd, J = 8.8, 2.2, 2.2 Hz), 7.63 (1H, d, J = 2.6 Hz), 7.55 (1H, dd, J = 8.8, 2.6 Hz), 7.45 (1H, dd, J = 5.8, 1.5 Hz), 7.21 (2H, ddd, J = 8.4, 2.2, 2.2 Hz), 6.16 (1H, br s), 6.08 (1H, dd, J = 5.9, 2.2 Hz), 6.00 (1H, dd, J = 1.8, 1.8 Hz), 5.86 (1H, d, J = 8.8 Hz), 3.98 (3H, s), 3.78 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 170.1, 152.1, 146.5, 140.1, 138.9, 138.7, 133.2, 129.1, 124.3, 118.1, 111.5, 105.2, 95.8, 84.3, 68.4, 56.5, 54.2. HRMS Calcd for C₂₀H₁₈N₂O₇I [M + H]: 525.01587; Found: 525.01710. [α]²⁴_D = +69.9 (c = 1.00, CHCl₃) for a 94% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): t_R of **7e**: 26 min (major) and 89 min (minor); t_R of **8e**: 33 min and 39 min.

2 87.24 3957386 49.287	2	89.37	1409877	3.032	
------------------------	---	-------	---------	-------	--

7f: IR (neat): 3387 (w, br), 3099 (w, br), 3019 (w, br), 2961 (w, br), 2870 (w, br), 1788 (m), 1755 (m), 1592 (m), 1526 (m), 1504 (m), 1321 (m), 1292 (s), 1229 (m), 1093 (m), 1026 (m), 817 (m), 797 (m), 744 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (1H, d, J = 2.2 Hz), 7.54 (1H, dd, J = 8.8, 2.2 Hz), 7.48 (1H, dd, J = 5.9, 1.8 Hz), 7.43-7.33 (4 H, m), 6.15 (1H, br s), 6.11 (1H, t, J = 1.8 Hz), 6.03 (1H, dd, J = 5.9, 2.2 Hz), 5.86 (1H, d, J = 9.2 Hz), 3.97 (3H, s), 3.79 (3H, s), 1.31 (9H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.8, 152.8, 152.5, 146.4, 140.8, 138.6, 130.4, 126.62, 126.58, 124.0, 118.1, 111.4, 105.1, 84.9, 68.4, 56.5, 54.0, 34.9, 31.4. HRMS Calcd for C₂₄H₂₇N₂O₇ [M + H]: 455.18183; Found: 455.18032. [α]²³_D = +90.6 (*c* = 0.500, CHCl₃) for a 90% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7f**: 12 min (major) and 26 min (minor); *t*_R of **8f**: 15 min and 17 min

|--|

7g: IR (neat): 3389 (w, br), 3106 (w, br), 2986 (w, br), 2873 (w, br), 1791 (m), 1759 (m), 1589 (m), 1527 (m), 1508 (m), 1325 (s), 1294 (s), 1256 (m), 1237 (m), 1167 (m), 1130 (m), 1099 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67-7.63 (5H, m), 7.53 (1H, dd, J = 8.8, 2.4 Hz), 7.46 (1H, dd, J = 5.8, 1.8 Hz), 6.24 (1H, br s), 6.10 (1H, dd, J = 6.0, 2.0 Hz), 6.03 (1H, t, J = 1.8 Hz), 5.82 (1H, d, J = 9.2 Hz), 4.00 (3H, s), 3.80 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 169.9, 151.9, 146.5, 139.9, 139.1, 137.6, 131.8 (q, J = 33.0 Hz), 128.0, 126.5 (q, J = 3.8 Hz), 125.4 (q, J = 202 Hz), 124.4, 118.1, 111.3, 105.3, 84.2, 68.5, 56.5, 54.3. HRMS Calcd for C₂₁H₁₇N₂O₇F₃Na [M + Na]: 489.0886; Found: 489.0882. [α]²⁵_D = +43.5 (c = 0.630, CHCl₃) for a 91% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): $t_{\rm R}$ of **7g**: 15 min (major) and 30 min (minor).

7h: IR (neat): 3382 (w, br), 3102 (w, br), 2953 (w, br), 1788 (m), 1759 (s), 1587 (s), 1527 (m), 1331 (m), 1301 (s), 1230 (m), 1093 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (1H, d, J = 2.2 Hz), 7.89-7.85 (2H, m), 7.85 (1H, d, J = 8.4 Hz), 7.62 (1 H, d, J = 2.6 Hz), 7.58-7.54 (3H, m), 7.44 (2H, ddd, J = 10.4, 6.0, 2.0 Hz), 6.33 (1H, br s), 6.24 (1H, dd, J = 1.8, 1.8 Hz), 6.05 (1H, dd, J = 5.6, 2.0 Hz), 5.85 (1H, d, J = 8.8 Hz), 4.01 (3H, s), 3.80 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 170.6, 152.3, 146.5, 140.7, 138.7, 133.5, 133.4, 131.2, 129.7, 128.7, 128.0, 127.7, 127.3, 126.7, 124.1, 124.0, 118.1, 111.5, 105.1, 84.9, 68.8, 56.5, 54.2. HRMS Calcd for C₂₄H₂₀N₂O₇Na [M + Na]: 471.1168; Found: 471.1164. [α]²⁶_D = +114.7 (*c* = 1.00, CHCl₃) for a 90% ee sample. The optical purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7h**: 39 min (major) and 183 min (minor); *t*_R of **8h**: 52 min and 64 min.

8i: IR (neat): 3365 (w, br), 3083 (w), 2953 (w), 2833 (w), 1787 (m), 1760 (m), 1744 (m), 1592 (m), 1526 (m), 1503 (m), 1476 (m), 1439 (m), 1333 (m), 1292 (s), 1257 (m), 1228 (m), 1197 (m), 1159 (m), 1100 (m), 1029 (m), 889 (m), 823 (m), 800 (m), 746 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (1H, dd, J = 8.4, 1.6 Hz), 7.56 (1H, d, J = 2.8 Hz), 7.52-7.41 (3H, m), 7.34 (1H, dd, J = 6.0, 1.6 Hz), 7.25 (1H, dt, J = 7.6, 1.6 Hz), 6.44 (1H, br s), 6.29 (1H, dd, J = 4.0, 1.6 Hz), 6.18 (1H, d, J = 9.2 Hz), 6.11 (1H, t, J = 1.6 Hz), 3.94 (3H, s), 3.86 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 170.5, 151.9, 146.6, 140.2, 138.7, 135.2, 134.4, 131.7, 130.7, 128.0, 124.7, 123.0, 118.2, 111.5, 104.9, 84.4, 70.3, 56.4, 54.6. HRMS Calcd for C₂₀H₁₈N₂O₇ [M + H]: 477.02974; Found: 477.02861 [α]²⁴_D = -25.11 (c = 1.00, CHCl₃) for a 24% ee sample. The

enantiomeric purity of the compound is determined by chiral HPLC analysis (OD, 90:10 hexanes:*i*-PrOH, 0.7 mL/min, 254 nm): $t_{\rm R}$ of **8i**: 69 min and 78 min.

7j: IR (neat): 3375 (w, br), 3105 (w), 2957 (w), 2919 (w), 2847 (w), 1792 (m), 1755 (m), 1595 (m), 1531 (m), 1509 (m), 1337 (m), 1299 (s), 1265 (m), 1236 (m), 1159 (m), 1101 (m), 1025 (m), 906 (m), 797 (m), 733 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.61 (2H, m), 7.45 (1H, dd, J = 6.0, 1.4 Hz), 7.42 (1H, dd, J = 2.0, 0.80 Hz), 6.70 (1H, dd, J = 3.6, 0.80 Hz), 6.45 (1H, dd, J = 3.4, 1.6 Hz), 6.27 (1H, br s), 6.24 (1H, d, J = 9.2 Hz), 6.19 (1H, dd, J = 5.8, 2.2 Hz), 5.87 (1H, dd, J = 1.4, 1.4 Hz), 3.98 (3H, s), 3.78 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 168.4, 152.2, 147.1, 146.6, 143.8, 140.7, 139.3, 123.8, 118.6, 112.0, 111.4, 110.7, 105.1, 84.1, 65.9, 56.4, 54.2. HRMS Calcd for C₁₈H₁₆N₂O₈Na [M + Na]: 411.0804; Found: 411.0793. [α]²⁴_D = +3.49 (c = 0.230, CHCl₃) for a 58% ee sample. The enantiomeric purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): $t_{\rm R}$ of **7j**: 20 min and 25 min.

7k: IR (neat): 3384(w, br), 3104 (w, br), 2926 (w), 2852 (w), 1789 (m), 1732 (s), 1592 (s), 1525 (m), 1505 (m), 1323 (m), 1292 (s), 1229 (s), 1155 (m), 1095 (m), 1043 (m), 1026 (m), 890 (m), 798 (m), 745 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, major isomer): δ 7.63 (1H, d, J = 2.2 Hz), 7.58 (1H, m), 7.54 (1H, dd, J = 2.9, 1.5 Hz), 7.44 (1 H, dd, J = 5.9, 1.5 Hz), 7.35 (1H, dd, J = 5.1, 2.9 Hz), 7.04 (1H, dd, J = 5.1, 1.5 Hz), 6.13 (1H, dd, J = 5.8, 2.2 Hz), 6.03 (1H, s), 5.95 (1H, d, J = 8.8 Hz), 5.88 (1H, t, J = 2.2 Hz), 3.97 (3H, s), 3.80 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 170.2, 152.2, 146.3, 140.6, 138.9, 134.6, 127.4, 126.8, 124.8, 124.0, 118.1, 111.0, 105.1, 85.0, 66.4, 56.4, 54.0. HRMS Calcd for C₁₈H₁₇N₂O₇S [M + H]: 405.07565; Found: 405.07530. [α]²³_D = +107.9 (*c* = 1.00, CHCl₃) for a 92% ee sample. The enantiomeric purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7k**: 18 min (major) and 29 min (minor).

		rac-7k	and 8k				7	/k		
100 - 100 -	7 St	20 22 24	0002 20 Time: Moutes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 650 - 600 - 550 - 450 - 45	- 1 - 10		7000-7 24 20 23 Time - Mututes 23	30 32 34	. 3
	Peak #	Ret. Time	Area	Area %		Peak #	Ret. Time	Area	Area %	
	1	18.72	6209680	49.379		1	18.48	37587020	96.053	
	2	23.75	99198	0.789		2	29.04	1544582	3.947	
	3	26.06	94179	0.749						
	4	29.13	6172575	49.084						

7m: IR (neat): 3381(w, br), 3094 (w, br), 2953 (w, br), 2846 (w, br), 1787 (m), 1754 (m), 1592 (m), 1523 (m), 1493 (m), 1324 (m), 1292 (s), 1228 (m), 1093 (m), 1026 (m), 816 (m), 796 (m), 744 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (1H, d, *J* = 2.6 Hz), 7.56-7.53 (1H, dd, *J* = 8.8, 2.6 Hz), 7.47-7.45 (1H, dd, *J* = 5.9, 1.5 Hz), 7.43-7.36 (4 H, m), 6.18 (1H, br s), 6.09-6.07 (1H, dd, *J* = 5.9, 1.8 Hz), 6.01 (1H, t, *J* = 1.8 Hz), 5.86 (1H, d, *J* = 8.8 Hz), 3.99 (3H, s), 3.79 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 170.4, 152.3, 146.7, 140.3, 139.2, 136.0, 132.2, 130.0, 129.0, 124.5, 118.3, 111.7, 105.4, 84.6, 68.5, 56.7, 54.4. HRMS Calcd for C₂₀H₁₈N₂O₇Cl (M + H): 433.08025; Found: 433.07983. [α]²⁵_D = 67.6 (*c* = 1.0, CHCl₃) for a 96% ee sample. The enantiomeric purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 mL/min, 254 nm): *t*_R of **7m**: 18 min and 41 min.

17: IR (neat): 3396 (w, br), 3006 (w), 2949 (w), 2829 (w), 1761 (m), 1759 (s), 1757 (m), 1595 (m), 1520 (m), 1464 (m), 1250 (m), 1224 (m), 1162 (m), 1092 (m), 1048 (m), 1029 (m), 746 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (1H, dd, J = 5.6, 1.6 Hz), 6.76-7.72 (3H, m), 6.52-6.48 (1H, m), 6.03 (1 H, dd, J = 6.0, 2.0 Hz), 5.56 (1H, dd, J = 1.8, 1.8 Hz), 4.66 (1H, br s), 3.81 (3H, s), 3.76 (3H, s), 1.59 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 173.2, 172.7, 153.7, 148.4, 134.5, 122.8, 120.9, 119.8, 114.3, 110.3, 85.5, 62.9, 55.8, 53.1, 21.4. HRMS Calcd for C₁₅H₁₇NO₅ [M + H]: 291.11067; Found: 291.11070. [α]²⁶_D = 135.73 (*c* = 1.00, CHCl₃) for an 87% ee sample. The optical purity of the compound is determined by chiral HPLC analysis (OD, 80:20 hexanes:*i*-PrOH, 1 ml/min, 254 nm): t_R of **17**: 17 min (minor) and 18 min (major).

17 (recrystallized to optical purity)

18: IR (neat): 3367 (w, br), 3105 (w), 2952 (w), 2839 (w), 2141 (w), 1761 (m), 1756 (s), 1738 (s), 1721 (s), 1641 (m), 1600 (m), 1516 (m), 1488 (m), 1459 (m), 1263 (s), 1223 (s), 1181 (m), 1162 (m), 1153 (m), 1108 (m), 1047 (m), 1025 (m), 905 (m), 745 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.78 (3H, t, *J* = 4.5 Hz), 5.88-5.87 (1H, m), 5.45 (1 H, s), 4.72 (1H, br s), 3.81 (3H, s), 3.74 (3H, s), 2.11 (3H, s), 1.48 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 167.0, 153.7, 149.0, 134.1, 121.1, 120.0, 119.8, 115.8, 110.3, 86.2, 63.0, 55.9, 53.1, 18.7, 16.0. HRMS Calcd for C₁₆H₂₀NO₅ [M + H]: 306.13415; Found: 306.13391. [α]²⁴_D = +16.464 (*c* = 1.00, CHCl₃) for a 72% ee sample. The optical purity of the compound is determined by chiral HPLC analysis (OD, 95:5 hexanes:*i*-PrOH, 1 ml/min, 254 nm): t_R of **18:** 28 min (major) and 40 min (minor).

16: IR (neat): 3262 (w, br), 3052 (w), 2952 (w, br), 2838 (w, br), 1736 (m), 1675 (s), 1592 (m), 1557 (s), 1510 (m), 1462 (m), 1435 (m), 1338 (m), 1264 (s), 1242 (s), 1169 (m), 1058 (m), 828 (m), 784 (m), 745 (m), 697 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.25 (1H, s br), 8.39 (1H, d, J = 2.8 Hz), 7.62-7.58 (2H, m), 7.38-7.18 (11H, m), 6.87-6.83 (2H, m), 6.36 (1H, d, J = 4.4 Hz), 3.98 (3H, s), 3.78 (3H, s), 3.52 (1H, d, J = 1.6 Hz), 3.47 (3H, s). ¹³C NMR (100 MHz, CDCl₃):

δ 169.5, 161.22, 161.17, 156.2, 150.5, 149.3, 140.1, 138.5, 138.4, 137.1, 137.0, 134.6, 134.4, 133.1, 133.0, 132.2, 132.1, 131.2, 129.2, 129.1, 128.83, 128.76, 128.65, 128.61, 128.5, 121.6, 117.4, 114.3, 114.2, 114.1, 85.5, 56.2, 55.6, 55.5, 35.5, 27.1. HRMS Calcd for C₃₄H₃₈N₂O₄P [M + H]: 569.25692; Found: 569.25454. [α]²³_D = +70.1 (*c* = 1.00, CHCl₃) for a >98% ee sample.

Experimental procedure for SnCl₂-mediated reduction of 7a followed by PhI(OAc)₂mediated deprotection: A 50 mL round bottom flask was charged with catalytic AVM product 7a (200 mg, 0.502 mmol), SnCl₂ (476 mg, 2.51 mmol), and ethanol (10.0 mL). The round bottom flask was fitted with a reflux condensor, and the mixture was allowed to warm to 65 °C with stirring. The resulting homogeneous solution was kept at 65 °C for 15 h before careful addition of a saturated solution of NaHCO₃. The aqueous layer was washed with EtOAc (3 x 50 mL). The organic layers were combined, dried over MgSO₄, and the volatiles were removed in *vacuo*. The residue was redissolved in EtOAc and the solution was passed through a plug of SiO₂ (EtOAc). The volatiles were again removed in vacuo, and the resulting brown oil residue was analyzed by ¹H NMR spectroscopy. The residue was dissolved in MeCN (5.00 mL). The resulting homogeneous solution was allowed to cool to 0 °C with stirring. PhI(OAc)₂ (322 mg, 1.00 mmol) was added as a solid, and the homogeneous mixture was kept at 0 °C for 30 min before addition of 1M H₂SO₄ (10.0 equiv, 5.00 mL). The aqueous layer was washed with dichloromethane (3 x 5 mL). The organic layers were combined and set aside. The aqueous layer was basified (pH = 10) by dropwise addition of a saturated solution of Na_2CO_3 , and was subsequently washed with dichloromethane (6 x 5 mL). The organic layers were combined, dried over MgSO₄, and the volatiles were removed *in vacuo*. The dark brown oil was purified by silica gel chromatography (2:1 petroleum ether: EtOAc) to deliver 11 as an off-white oil (100 mg, 0.404 mmol, 81% yield over two steps). IR (neat): 3384 (w), 3321 (w), 2953 (w), 2924 (w), 1784 (m), 1759 (s),, 1734 (m), 1601 (m), 1489 (m), 145 (s), 1434 (m), 1244 (m), 1144 (m), 1096 (m), 1050 (m), 1024 (m), 890 (m), 834 (m), 704 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.59 (2H, m), 7.44-7.36 (3H, m), 6.97 (1H, dd, J = 5.8, 1.4 Hz), 6.14 (1H, dd, J = 6.0, 2.0 Hz), 5.89 (1H, dd, J = 2.0, 1.6 Hz), 3.82 (3H, s), 1.89 (2H, br s). ¹³C NMR (100 MHz, CDCl₃): δ 173.2, 172.8, 153.4, 137.1, 129.3, 129.2, 125.7, 123.5 86.7, 65.2, 53.6. HRMS Calcd for $C_{13}H_{14}NO_4$ [M + H]: 248.09228; Found: 248.09293. [α]²⁶_D = +94.45 (c = 0.733, CDCl₃) for a >98% ee sample.

Experimental procedure for SnCl₂-mediated reduction of 7a: A 100 mL round bottom flask was charged with **6a** (398 mg, 1.00 mmol), SnCl₂ (1.14 g, 6.00 mmol), and ethanol (20.0 mL). The round bottom flask was fitted with a reflux condensor, and the mixture was allowed to warm to 65 °C with stirring. The resulting homogeneous solution was kept at 65 °C for 15 h before careful addition of a saturated solution of NaHCO₃. The aqueous layer was washed with EtOAc (3 x 100 mL). The organic layers were combined, dried over MgSO₄, and the volatiles were

removed *in vacuo*. The dark brown oil residue was purified by silica gel chromatography (1:1 petroleum ether:EtOAc) to afford **10a** as an off-white solid (285 mg, 0.771 mmol, 77% yield).

10a: IR (neat): 3445 (w), 3356 (w), 2951 (w), 1785 (w), 1735 (s), 1616 (m), 1592 (m), 1512 (s), 1458 (m), 1429 (m), 1283 (m), 1238 (s), 1199 (s), 1166 (m), 1095 (m), 1061 (m), 1031 (m), 1004 (m), 948 (m), 906 (m), 836 (m), 826 (m), 795 (m), 725 (s), 696 (s), 612 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (2H, dd, J = 8.0, 1.5 Hz), 7.46 (1H, dd, J = 5.8, 1.5 Hz), 7.36-7.29 (3H, m), 6.19 (1H, d, J = 2.2 Hz), 5.98 (1H, d, J = 4.8 Hz), 5.96 (1H, d, J = 1.8 Hz), 5.90 (1H, dd, J = 8.4, 2.6 Hz), 5.83 (1H, dd, J = 5.9, 2.2 Hz), 5.10 (1H, br s), 3.76 (3H, s), 3.69 (3H, s), 3.37 (2H, br s). ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 172.2, 154.1, 150.1, 140.2, 136.5, 128.9, 128.8, 127.6, 126.2, 122.3, 117.4, 106.8, 99.8, 84.5, 69.9, 55.8, 53.4. HRMS Calcd for C₂₀H₂₁N₂O₅ [M + H]: 369.14505; Found: 369.14474. [α]²⁵_D = +76.25 (*c* = 1.00, CHCl₃) for a >98% ee sample.

10m: IR (neat): 3444 (w, br), 3363 (w, br), 3098 (w, br), 3010 (w, br), 2850 (w, br), 2846 (w, br), 1763 (m), 1737 (m), 1515 (m), 1523 (m), 1463 (m), 1250 (s), 1201 (m), 1090 (m), 1026 (m), 947(m), 892(m), 821 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (2H, m), 7.45 (1H, dd, J = 5.9, 1.8 Hz), 7.35-7.32 (2 H, m), 6.23 (1H, d, J = 2.2 Hz), 6.01-5.94 (3H, m), 5.90 (1H, t, J = 1.8 Hz), 5.10 (1H, br s), 3.82 (3H, s), 3.72 (3H, s), 3.38 (2H, br s). ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 171.5, 153.6, 150.0, 140.1, 135.0, 134.6, 129.3, 128.9, 125.6, 122.7, 117.5, 106.8, 99.6, 84.2, 69.3, 55.7, 53.4. HRMS Calcd for

 $C_{20}H_{20}N_2O_5Cl [M + H]: 403.10607$; Found: 403.10422. $[\alpha]^{23}{}_D = +41.8 (c = 0.500, CHCl_3)$ for a >98% ee sample. The enantiomeric purity of the compound was determined by chiral HPLC analysis (OJ, 70:30 hexanes:*i*-PrOH, 1 mL/min, 254 nm): t_R of **10m**: 40.0 min (major) and 79.9 min (minor)

Experimental procedure for PhI(OAc)² mediated deprotection of 10a: A 13x100 mm test tube was charged with aniline 10a (36.8 mg, 0.100 mmol) and acetonitrile (1.00 mL). The resulting homogeneous solution was allowed to cool to 0 °C with stirring. PhI(OAc)² (64.4 mg, 0.200 mmol) was added as a solid, and the resulting homogeneous solution was kept at 0 °C for 30 min before addition of 1M H₂SO₄ (10.0 equiv, 1.00 mL). The aqueous layer was washed with dichloromethane (3 x 2 mL). The organic layers were combined and set aside. The aqueous layer was basified (pH = 10) by dropwise addition of a saturated solution of Na₂CO₃, and was subsequently washed with dichloromethane (6 x 2 mL). The organic layers were combined and set aside was purified by silica gel chromatography (2:1 petroleum ether:EtOAc) to furnish 11 as an off-white oil (21.0 mg, 0.0849 mmol, 85% yield).

Experimental procedure for synthesis of Ag-based complex 12: A 50 mL round bottom flask was charged with 1 (203 mg, 0.400 mmol), AgOAc (66.8 mg, 0.400 mmol), and THF (5.0 mL). The mixture was allowed to stir at 25 °C for 5 min, and was then filtered through a pad of Celite[®] into a vial. Petroleum ether was added dropwise to the resulting homogeneous solution until the solution became slightly cloudy. At this point, THF was added dropwise until the solution was again clear, and the vial was sealed and stored in the dark for 12 hours. The resulting colorless crystals were isolated through filtration (193 mg, 0.325 mmol, 81% yield). mp = 128-132 °C. IR (neat): 3249 (w), 3057 (w), 2954 (m), 2865 (w), 1687 (m), 1627 (w), 1545 (m), 1508 (s), 1479 (m), 1460 (m), 1436 (m), 1409 (m), 1292 (m), 1236 (s), 1160 (s), 1097 (m), 1068 (m), 1031 (m), 826 (s), 798 (m), 756 (s) 690 (s), 505 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 10.03 (1H, br s), 9.12 (1H, br s), 8.20 (1H, d, J = 6.0 Hz), 7.59-7.47 (5H, m), 7.42-7.20 (7H, m), 7.14 (2H, t, J = 7.6 Hz), 6.89 (1H, t, J = 7.6 Hz), 6.79 (2H, ddd, J = 9.2, 3.2, 2.2 Hz), 3.79 (1H, br s), 3.69 (3H, s), 2.08 (1.5H, s, AgOAc), 0.73 (9H, s). ¹³C NMR (100 MHz, CDCl₃): § 187.7, 178.0, 167.9, 160.3, 160.2, 155.7, 138.8, 138.7, 135.0, 134.8, 134.3, 134.1, 133.3, 132.8, 132.5, 132.2, 131.0, 130.7, 130.5, 130.4, 130.3, 129.6, 129.3, 129.2, 129.16, 129.1, 120.7, 113.4, 82.5, 54.7, 34.9, 26.3. $[\alpha]^{23}_{D} = -54.26$ (*c* = 1.00, CHCl₃).

Experimental procedure for synthesis of powder Ag-ligand complex: A 50 mL round bottom flask was charged with 1 (200 mg, 0.393 mmol), AgOAc (65.6 mg, 0.393 mmol), and THF (5.0 mL). The mixture was allowed to stir at 25 °C for 5 min, and was subsequently filtered through a pad of Celite[®]. Volatiles were removed *in vacuo* to give a white powder (258.5 mg, 0.277 mmol, 71% yield). mp = 148-153 °C. IR (neat): 3119 (w), 2951 (w), 2833 (w), 1648 (w), 1545 (m), 1509 (s), 1478 (m), 1462 (m), 1435 (m), 1400 (m), 1362 (m), 1234 (s), 1163 (m), 1095 (m), 1032 (m), 828 (m), 744 (m), 693 (s), 658 (s), 484 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 10.14 (1H, br s), 9.17 (1H, br s), 8.18 (1H, d, *J* = 6.4 Hz), 7.57-7.55 (3H, m), 7.50 (2H, dd, *J* = 7.4, 3.6 Hz), 7,41-7.27 (7H, m), 7.19 (2H, t, *J* = 6.6 Hz), 6.86 (1H, t, *J* = 8.2 Hz), 6.72 (2H, d, *J* = 8.8 Hz), 3.93 (1H, br s), 3.69 (3H, s), 2.03 (2H, s, *AgOAc*), 0.72 (9H, s).

¹³C NMR (100 MHz, CDCl₃): δ 178.0, 168.0, 160.3, 160.1, 155.7, 138.7, 138.67, 135.1, 134.9, 134.4, 134.2, 133.3, 132.9, 132.4, 132.45, 132.2, 131.8, 130.9, 130.8, 130.6, 130.5, 129.8, 129.4, 129.3, 129.15, 120.8, 113.4, 82.3, 54.7, 34.9, 26.4, 23.0. $[\alpha]^{23}_{D} = -69.25$ (*c* =1.00, CHCl₃).

X-ray crystal structure of α-ketoimine ester 4a:

Table 1. Crystal data and struct	ure refinement for 4a	
Identification code	lcw07	
Empirical formula	C16 H14 N2 O5	
Formula weight	314.29	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Trilinic	
Space group	P -1	
Unit cell dimensions	a = 8.595(2) Å	$\alpha = 71.928(5)^{\circ}$.
	b = 9.799(3) Å	$\beta = 85.027(5)^{\circ}.$
	c = 10.014(3) Å	$\gamma = 68.533(5)^{\circ}$.
Volume	745.9(3) Å ³	
Z	2	
Density (calculated)	1.399 Mg/m ³	

Absorption coefficient	0.106 mm ⁻¹
F(000)	328
Crystal size	0.16 x 0.12 x 0.09 mm ³
Theta range for data collection	2.14 to 28.38°.
Index ranges	-11<=h<=8, -13<=k<=13, -13<=l<=13
Reflections collected	5715
Independent reflections	3706 [R(int) = 0.0241]
Completeness to theta = 28.38°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9905 and 0.9833
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3706 / 0 / 264
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0510, wR2 = 0.1048
R indices (all data)	R1 = 0.0898, $wR2 = 0.1220$
Extinction coefficient	noref
Largest diff. peak and hole	0.193 and -0.225 e.Å ⁻³

	Х	У	Z	U(eq)	
O(1)	1737(2)	5641(1)	4945(1)	35(1)	
O(2)	3939(2)	5382(1)	3545(1)	39(1)	
O(3)	-1708(2)	10323(2)	-1104(2)	60(1)	
O(4)	-202(2)	9249(2)	-2610(2)	56(1)	
O(5)	3282(2)	3972(1)	370(1)	38(1)	
N(1)	1872(2)	3621(2)	2895(1)	31(1)	
N(2)	-696(2)	9209(2)	-1416(2)	43(1)	
C(1)	2546(2)	3578(2)	4003(2)	27(1)	
C(2)	3142(2)	2171(2)	5203(2)	27(1)	
C(3)	2748(2)	894(2)	5276(2)	33(1)	
C(4)	3346(3)	-426(2)	6390(2)	40(1)	
C(5)	4352(3)	-503(2)	7431(2)	42(1)	
C(6)	4747(2)	754(2)	7368(2)	39(1)	
C(7)	4143(2)	2086(2)	6265(2)	32(1)	
C(8)	2839(2)	4967(2)	4119(2)	27(1)	
C(9)	1886(3)	7004(2)	5123(3)	44(1)	
C(10)	1243(2)	5045(2)	1828(2)	29(1)	
C(11)	-111(2)	6247(2)	2049(2)	36(1)	
C(12)	-756(2)	7621(2)	998(2)	38(1)	
C(13)	-44(2)	7752(2)	-288(2)	34(1)	
C(14)	1296(2)	6565(2)	-565(2)	34(1)	
C(15)	1945(2)	5204(2)	494(2)	30(1)	
C(16)	4072(3)	4118(3)	-960(2)	43(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Table 3. Bond lengths [Å] a	nd angles [°]
O(1)-C(8)	1.3276(19)
O(1)-C(9)	1.452(2)
O(2)-C(8)	1.196(2)
O(3)-N(2)	1.231(2)
O(4)-N(2)	1.227(2)
O(5)-C(15)	1.359(2)
O(5)-C(16)	1.432(2)
N(1)-C(1)	1.278(2)
N(1)-C(10)	1.415(2)
N(2)-C(13)	1.467(2)
C(1)-C(2)	1.473(2)
C(1)-C(8)	1.512(2)
C(2)-C(7)	1.390(2)
C(2)-C(3)	1.391(2)
C(3)-C(4)	1.378(3)
C(3)-H(3)	0.918(19)
C(4)-C(5)	1.378(3)
C(4)-H(4)	0.954(19)
C(5)-C(6)	1.375(3)
C(5)-H(5)	0.96(2)
C(6)-C(7)	1.379(3)
C(6)-H(6)	0.98(2)
C(7)-H(7)	0.956(18)
C(9)-H(9A)	0.98(2)
C(9)-H(9B)	0.996(19)
C(9)-H(9C)	0.95(2)
C(10)-C(11)	1.380(2)
C(10)-C(15)	1.405(2)
C(11)-C(12)	1.380(3)
C(11)-H(11)	0.956(19)
C(12)-C(13)	1.366(3)
C(12)-H(12)	0.949(19)
C(13)-C(14)	1.386(2)
C(14)-C(15)	1.376(2)
C(14)-H(14)	0.941(18)

C(16)-H(16A)	0.98(2)
C(16)-H(16B)	1.01(2)
C(16)-H(16C)	0.99(2)
C(8)-O(1)-C(9)	116.16(15)
C(15)-O(5)-C(16)	117.08(15)
C(1)-N(1)-C(10)	118.58(14)
O(4)-N(2)-O(3)	123.85(17)
O(4)-N(2)-C(13)	118.39(17)
O(3)-N(2)-C(13)	117.76(17)
N(1)-C(1)-C(2)	122.37(15)
N(1)-C(1)-C(8)	121.16(15)
C(2)-C(1)-C(8)	116.42(15)
C(7)-C(2)-C(3)	118.90(17)
C(7)-C(2)-C(1)	120.37(15)
C(3)-C(2)-C(1)	120.71(16)
C(4)-C(3)-C(2)	120.00(19)
C(4)-C(3)-H(3)	121.0(12)
C(2)-C(3)-H(3)	118.9(12)
C(5)-C(4)-C(3)	120.65(19)
C(5)-C(4)-H(4)	119.9(11)
C(3)-C(4)-H(4)	119.4(12)
C(6)-C(5)-C(4)	119.73(19)
C(6)-C(5)-H(5)	119.4(13)
C(4)-C(5)-H(5)	120.8(13)
C(5)-C(6)-C(7)	120.2(2)
C(5)-C(6)-H(6)	120.3(12)
C(7)-C(6)-H(6)	119.5(12)
C(6)-C(7)-C(2)	120.50(18)
C(6)-C(7)-H(7)	120.3(11)
C(2)-C(7)-H(7)	119.2(11)
O(2)-C(8)-O(1)	125.09(16)
O(2)-C(8)-C(1)	123.67(15)
O(1)-C(8)-C(1)	111.23(14)
O(1)-C(9)-H(9A)	112.3(12)
O(1)-C(9)-H(9B)	105.1(11)
H(9A)-C(9)-H(9B)	113.6(16)

O(1)-C(9)-H(9C)	109.5(13)
H(9A)-C(9)-H(9C)	105.0(18)
H(9B)-C(9)-H(9C)	111.4(16)
C(11)-C(10)-C(15)	119.41(16)
C(11)-C(10)-N(1)	121.18(15)
C(15)-C(10)-N(1)	119.30(15)
C(10)-C(11)-C(12)	121.28(17)
C(10)-C(11)-H(11)	119.8(11)
C(12)-C(11)-H(11)	119.0(11)
C(13)-C(12)-C(11)	118.17(18)
C(13)-C(12)-H(12)	118.8(12)
C(11)-C(12)-H(12)	123.0(12)
C(12)-C(13)-C(14)	122.52(17)
C(12)-C(13)-N(2)	119.09(17)
C(14)-C(13)-N(2)	118.38(16)
C(15)-C(14)-C(13)	118.94(17)
C(15)-C(14)-H(14)	123.8(10)
C(13)-C(14)-H(14)	117.2(10)
O(5)-C(15)-C(14)	124.72(15)
O(5)-C(15)-C(10)	115.59(15)
C(14)-C(15)-C(10)	119.66(16)
O(5)-C(16)-H(16A)	106.0(12)
O(5)-C(16)-H(16B)	109.2(11)
H(16A)-C(16)-H(16B)	109.2(16)
O(5)-C(16)-H(16C)	110.3(12)
H(16A)-C(16)-H(16C)	108.9(16)
H(16B)-C(16)-H(16C)	113.1(17)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(1)	37(1)	32(1)	38(1)	-17(1)	10(1)	-13(1)	
O(2)	42(1)	43(1)	38(1)	-13(1)	11(1)	-24(1)	
O(3)	51(1)	39(1)	70(1)	-7(1)	-8(1)	0(1)	
O(4)	62(1)	54(1)	38(1)	6(1)	-1(1)	-20(1)	
O(5)	41(1)	37(1)	29(1)	-11(1)	9(1)	-8(1)	
N(1)	34(1)	34(1)	26(1)	-10(1)	6(1)	-15(1)	
N(2)	36(1)	40(1)	48(1)	-2(1)	-8(1)	-14(1)	
C(1)	25(1)	31(1)	26(1)	-12(1)	9(1)	-12(1)	
C(2)	25(1)	29(1)	28(1)	-12(1)	8(1)	-8(1)	
C(3)	32(1)	34(1)	35(1)	-14(1)	7(1)	-13(1)	
C(4)	47(1)	26(1)	46(1)	-11(1)	10(1)	-14(1)	
C(5)	45(1)	31(1)	36(1)	-6(1)	3(1)	-2(1)	
C(6)	35(1)	42(1)	33(1)	-13(1)	1(1)	-6(1)	
C(7)	34(1)	32(1)	33(1)	-13(1)	7(1)	-12(1)	
C(8)	29(1)	29(1)	21(1)	-5(1)	2(1)	-10(1)	
C(9)	47(1)	34(1)	54(1)	-22(1)	3(1)	-11(1)	
C(10)	32(1)	34(1)	25(1)	-9(1)	1(1)	-15(1)	
C(11)	32(1)	44(1)	32(1)	-12(1)	7(1)	-14(1)	
C(12)	28(1)	40(1)	42(1)	-14(1)	3(1)	-8(1)	
C(13)	30(1)	35(1)	34(1)	-6(1)	-4(1)	-13(1)	
C(14)	35(1)	41(1)	27(1)	-9(1)	4(1)	-19(1)	
C(15)	29(1)	34(1)	28(1)	-12(1)	1(1)	-12(1)	
C(16)	45(1)	50(1)	32(1)	-18(1)	12(1)	-13(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(3)	2060(20)	960(20)	4590(20)	37(5)
H(4)	3100(20)	-1310(20)	6415(19)	39(5)
H(5)	4800(30)	-1430(30)	8190(20)	58(6)
H(6)	5460(20)	710(20)	8100(20)	49(6)
H(7)	4450(20)	2950(20)	6202(18)	33(5)
H(9A)	3010(30)	6820(20)	5440(20)	48(6)
H(9B)	1000(30)	7330(20)	5790(20)	44(5)
H(9C)	1710(30)	7780(30)	4240(20)	58(7)
H(11)	-620(20)	6130(20)	2950(20)	39(5)
H(12)	-1670(20)	8470(20)	1127(19)	48(6)
H(14)	1710(20)	6747(19)	-1479(19)	32(5)
H(16A)	5020(30)	3160(20)	-850(20)	53(6)
H(16B)	4500(20)	5000(20)	-1180(20)	50(6)
H(16C)	3300(30)	4240(20)	-1690(20)	52(6)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

<i>Table 6.</i> Torsion angles [°]	
C(10)-N(1)-C(1)-C(2)	176.19(14)
C(10)-N(1)-C(1)-C(8)	-6.5(2)
N(1)-C(1)-C(2)-C(7)	167.75(16)
C(8)-C(1)-C(2)-C(7)	-9.7(2)
N(1)-C(1)-C(2)-C(3)	-10.6(2)
C(8)-C(1)-C(2)-C(3)	171.92(15)
C(7)-C(2)-C(3)-C(4)	0.2(2)
C(1)-C(2)-C(3)-C(4)	178.58(15)
C(2)-C(3)-C(4)-C(5)	-0.9(3)
C(3)-C(4)-C(5)-C(6)	0.9(3)
C(4)-C(5)-C(6)-C(7)	-0.3(3)
C(5)-C(6)-C(7)-C(2)	-0.4(3)
C(3)-C(2)-C(7)-C(6)	0.5(2)
C(1)-C(2)-C(7)-C(6)	-177.95(15)
C(9)-O(1)-C(8)-O(2)	1.3(3)
C(9)-O(1)-C(8)-C(1)	-179.37(16)
N(1)-C(1)-C(8)-O(2)	-75.9(2)
C(2)-C(1)-C(8)-O(2)	101.57(19)
N(1)-C(1)-C(8)-O(1)	104.73(17)
C(2)-C(1)-C(8)-O(1)	-77.80(18)
C(1)-N(1)-C(10)-C(11)	-66.5(2)
C(1)-N(1)-C(10)-C(15)	117.43(18)
C(15)-C(10)-C(11)-C(12)	-2.1(3)
N(1)-C(10)-C(11)-C(12)	-178.15(17)
C(10)-C(11)-C(12)-C(13)	1.6(3)
C(11)-C(12)-C(13)-C(14)	-0.4(3)
C(11)-C(12)-C(13)-N(2)	-179.23(17)
O(4)-N(2)-C(13)-C(12)	-170.46(18)
O(3)-N(2)-C(13)-C(12)	9.7(3)
O(4)-N(2)-C(13)-C(14)	10.6(3)
O(3)-N(2)-C(13)-C(14)	-169.19(16)
C(12)-C(13)-C(14)-C(15)	-0.4(3)
N(2)-C(13)-C(14)-C(15)	178.50(16)
C(16)-O(5)-C(15)-C(14)	0.6(3)
C(16)-O(5)-C(15)-C(10)	-177.48(17)

-178.08(16)
-0.1(3)
179.44(15)
-4.4(2)
1.3(3)
177.44(16)

Symmetry transformations used to generate equivalent atoms:

X-ray crystal structure of 10m:

Table 1. Crystal data and structure refineme	ent for 10m		
Identification code	emv01		
Empirical formula	C20 H19 Cl N2 O5		
Formula weight	402.82		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.8375(16) Å	α= 90°.	
	b = 11.630(2) Å	β= 90°.	
	c = 18.584(3) Å	$\gamma = 90^{\circ}$.	
Volume	1910.2(6) Å ³		
Z	4		
Density (calculated)	1.401 Mg/m ³		
Absorption coefficient	0.235 mm ⁻¹		
F(000)	840		
Crystal size $0.1 \times 0.1 \times 0.05 \text{ mm}^3$			
Theta range for data collection	2.07 to 28.31°.		
Index ranges	-11<=h<=10, -11<=k<=15, -24<=l<=18		
Reflections collected	14569		
Independent reflections	4754 [R(int) = 0.0728]		
Completeness to theta = 28.31°	100.0 %		

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole Empirical none and none Full-matrix least-squares on F^2 4754 / 0 / 329 0.995 R1 = 0.0615, wR2 = 0.1043 R1 = 0.1139, wR2 = 0.1226 0.05(9) 0.247 and -0.171 e.Å⁻³

	Х	у	Z	U(eq)
Cl(1)	-66(1)	2810(1)	119(1)	70(1)
O(2)	6754(2)	5252(2)	2680(1)	41(1)
O(5)	3296(3)	5135(2)	2927(1)	46(1)
O(4)	3827(3)	6925(2)	2592(1)	56(1)
C(9)	5920(4)	4578(3)	2162(2)	38(1)
N(2)	5285(3)	6322(2)	1433(1)	36(1)
C(15)	3491(3)	4680(3)	1411(2)	33(1)
C(8)	4672(3)	5354(3)	1836(2)	33(1)
O(3)	9175(3)	5670(3)	2898(2)	65(1)
C(13)	3873(3)	5914(3)	2491(2)	35(1)
C(10)	7112(4)	4125(3)	1672(2)	42(1)
C(12)	8272(4)	5191(3)	2528(2)	46(1)
C(3)	6020(4)	5485(3)	255(2)	38(1)
C(20)	2579(4)	5263(3)	916(2)	42(1)
C(4)	6281(3)	6185(3)	841(2)	33(1)
O(1)	7816(3)	7506(2)	1442(1)	63(1)
C(6)	8558(5)	6842(3)	255(2)	50(1)
C(17)	2152(4)	2940(3)	1109(2)	50(1)
C(1)	8281(4)	6123(3)	-332(2)	43(1)
C(16)	3237(4)	3522(3)	1500(2)	45(1)
C(18)	1313(4)	3529(3)	618(2)	46(1)
C(5)	7588(4)	6862(3)	831(2)	42(1)
C(19)	1511(4)	4688(4)	516(2)	44(1)
C(14)	2593(5)	5574(5)	3577(2)	57(1)
C(11)	8438(4)	4475(3)	1895(2)	48(1)
C(2)	7014(4)	5451(3)	-320(2)	40(1)
N(1)	9333(4)	6057(4)	-887(2)	64(1)
C(7)	9313(6)	7873(5)	1603(3)	73(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Tuble 5. Dona lengting	[11] and angles [
Cl(1)-C(18)	1.745(3)
O(2)-C(12)	1.373(4)
O(2)-C(9)	1.445(4)
O(5)-C(13)	1.318(4)
O(5)-C(14)	1.451(5)
O(4)-C(13)	1.192(4)
C(9)-C(10)	1.489(5)
C(9)-C(8)	1.549(4)
N(2)-C(4)	1.418(4)
N(2)-C(8)	1.456(4)
C(15)-C(16)	1.375(5)
C(15)-C(20)	1.399(4)
C(15)-C(8)	1.526(4)
C(8)-C(13)	1.550(4)
O(3)-C(12)	1.192(4)
C(10)-C(11)	1.307(5)
C(12)-C(11)	1.448(5)
C(3)-C(4)	1.378(4)
C(3)-C(2)	1.385(4)
C(20)-C(19)	1.375(5)
C(4)-C(5)	1.398(4)
O(1)-C(5)	1.374(4)
O(1)-C(7)	1.423(5)
C(6)-C(5)	1.372(5)
C(6)-C(1)	1.396(5)
C(17)-C(18)	1.361(5)
C(17)-C(16)	1.381(5)
C(1)-C(2)	1.366(5)
C(1)-N(1)	1.391(5)
C(18)-C(19)	1.372(5)
C(12)-O(2)-C(9)	109.5(3)
C(13)-O(5)-C(14)	115.8(3)
O(2)-C(9)-C(10)	103.8(3)
O(2)-C(9)-C(8)	107.9(3)
C(10)-C(9)-C(8)	118.1(3)

Table 3. Bond lengths [Å] and angles [°]

C(4)-N(2)-C(8)	123.0(3)
C(16)-C(15)-C(20)	117.4(3)
C(16)-C(15)-C(8)	123.5(3)
C(20)-C(15)-C(8)	119.0(3)
N(2)-C(8)-C(15)	112.6(2)
N(2)-C(8)-C(9)	112.8(3)
C(15)-C(8)-C(9)	112.9(3)
N(2)-C(8)-C(13)	104.4(3)
C(15)-C(8)-C(13)	108.1(2)
C(9)-C(8)-C(13)	105.2(2)
O(4)-C(13)-O(5)	124.6(3)
O(4)-C(13)-C(8)	123.6(3)
O(5)-C(13)-C(8)	111.7(3)
C(11)-C(10)-C(9)	109.3(3)
O(3)-C(12)-O(2)	120.7(3)
O(3)-C(12)-C(11)	132.0(3)
O(2)-C(12)-C(11)	107.2(3)
C(4)-C(3)-C(2)	121.4(3)
C(19)-C(20)-C(15)	121.0(4)
C(3)-C(4)-C(5)	117.5(3)
C(3)-C(4)-N(2)	125.1(3)
C(5)-C(4)-N(2)	117.4(3)
C(5)-O(1)-C(7)	118.3(3)
C(5)-C(6)-C(1)	120.7(3)
C(18)-C(17)-C(16)	119.0(4)
C(2)-C(1)-N(1)	121.9(3)
C(2)-C(1)-C(6)	118.3(3)
N(1)-C(1)-C(6)	119.7(3)
C(15)-C(16)-C(17)	122.0(4)
C(17)-C(18)-C(19)	121.1(3)
C(17)-C(18)-Cl(1)	119.8(3)
C(19)-C(18)-Cl(1)	119.1(3)
C(6)-C(5)-O(1)	124.2(3)
C(6)-C(5)-C(4)	121.1(3)
O(1)-C(5)-C(4)	114.7(3)
C(20)-C(19)-C(18)	119.4(4)
C(10)-C(11)-C(12)	110.2(3)
-------------------	----------
C(1)-C(2)-C(3)	121.0(3)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	61(1)	85(1)	65(1)	-23(1)	-11(1)	-21(1)
O(2)	35(1)	52(2)	36(1)	-4(1)	-2(1)	5(1)
O(5)	50(1)	56(2)	33(1)	-1(1)	10(1)	-2(1)
O(4)	65(2)	42(2)	60(2)	-16(1)	18(1)	0(1)
C(9)	40(2)	38(2)	34(2)	2(2)	3(2)	-1(2)
N(2)	46(2)	29(2)	32(1)	-2(1)	1(1)	-1(1)
C(15)	35(2)	34(2)	30(2)	-4(1)	4(1)	4(2)
C(8)	35(2)	33(2)	31(2)	0(1)	-1(1)	0(1)
O(3)	42(1)	87(2)	66(2)	0(2)	-15(1)	-4(2)
C(13)	28(2)	38(2)	38(2)	-5(2)	-3(1)	0(2)
C(10)	53(2)	40(2)	34(2)	4(2)	2(2)	13(2)
C(12)	38(2)	54(2)	45(2)	9(2)	-3(2)	9(2)
C(3)	37(2)	40(2)	38(2)	-4(2)	-2(2)	-4(2)
C(20)	43(2)	41(2)	41(2)	-1(2)	2(2)	1(2)
C(4)	38(2)	30(2)	33(2)	6(1)	-2(1)	7(1)
O(1)	66(2)	68(2)	55(2)	-21(1)	10(1)	-28(2)
C(6)	52(2)	45(2)	52(2)	3(2)	7(2)	-16(2)
C(17)	59(2)	33(2)	56(2)	-8(2)	0(2)	-8(2)
C(1)	50(2)	44(2)	35(2)	8(2)	7(2)	-4(2)
C(16)	53(2)	37(2)	43(2)	-4(2)	-4(2)	4(2)
C(18)	39(2)	60(3)	38(2)	-17(2)	-2(2)	-5(2)
C(5)	52(2)	34(2)	39(2)	-2(2)	0(2)	-6(2)
C(19)	43(2)	52(2)	37(2)	2(2)	-1(2)	3(2)
C(14)	49(2)	84(4)	39(2)	-14(3)	6(2)	-8(3)
C(11)	39(2)	58(3)	46(2)	13(2)	11(2)	15(2)
C(2)	49(2)	41(2)	31(2)	-6(2)	-1(2)	1(2)
N(1)	76(2)	69(3)	46(2)	-4(2)	18(2)	-25(2)
C(7)	75(3)	84(4)	61(3)	-19(3)	-2(3)	-36(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for EMV01. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(3)	2730(30)	6080(30)	871(14)	27(8)
H(2)	5220(40)	5050(30)	230(14)	27(0) 37(0)
H(1)	6850(30)	3650(30)	1272(16)	37(9)
H(8)	5650(30)	6840(30)	1272(10) 1769(17)	41(9)
H(11)	1940(30)	2170(30)	1207(14)	32(8)
H(5)	9780(40)	8290(30)	1244(19)	53(11)
H(9)	9380(40)	4290(30)	1758(17)	56(11)
H(10)	5460(30)	4010(30)	2463(15)	32(8)
H(6)	6780(30)	4970(30)	-706(16)	36(9)
H(7)	8990(50)	5630(40)	-1230(20)	73(15)
H(12)	3770(40)	3110(30)	1834(17)	46(10)
H(4)	9450(40)	7280(30)	287(15)	41(9)
H(14)	1710(50)	6120(40)	3450(20)	74(13)
H(16)	950(40)	5090(30)	229(16)	35(9)
H(13)	3220(40)	6160(30)	3807(19)	64(12)
H(15)	2450(60)	5030(40)	3850(20)	81(18)
H(17)	10080(50)	7180(40)	1690(20)	95(17)
H(18)	9240(50)	8280(40)	2100(20)	97(15)
H(19)	9810(50)	6720(40)	-1009(19)	73(14)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

<i>Table 6.</i> Torsion angles [°]	
C(12)-O(2)-C(9)-C(10)	-1.2(3)
C(12)-O(2)-C(9)-C(8)	-127.2(3)
C(4)-N(2)-C(8)-C(15)	-71.6(4)
C(4)-N(2)-C(8)-C(9)	57.7(4)
C(4)-N(2)-C(8)-C(13)	171.4(2)
C(16)-C(15)-C(8)-N(2)	150.1(3)
C(20)-C(15)-C(8)-N(2)	-31.8(4)
C(16)-C(15)-C(8)-C(9)	20.9(4)
C(20)-C(15)-C(8)-C(9)	-161.0(3)
C(16)-C(15)-C(8)-C(13)	-95.1(4)
C(20)-C(15)-C(8)-C(13)	83.0(3)
O(2)-C(9)-C(8)-N(2)	63.9(3)
C(10)-C(9)-C(8)-N(2)	-53.2(4)
O(2)-C(9)-C(8)-C(15)	-167.0(2)
C(10)-C(9)-C(8)-C(15)	75.9(4)
O(2)-C(9)-C(8)-C(13)	-49.3(3)
C(10)-C(9)-C(8)-C(13)	-166.4(3)
C(14)-O(5)-C(13)-O(4)	-1.2(5)
C(14)-O(5)-C(13)-C(8)	176.8(3)
N(2)-C(8)-C(13)-O(4)	0.3(4)
C(15)-C(8)-C(13)-O(4)	-119.9(3)
C(9)-C(8)-C(13)-O(4)	119.2(3)
N(2)-C(8)-C(13)-O(5)	-177.8(2)
C(15)-C(8)-C(13)-O(5)	62.1(3)
C(9)-C(8)-C(13)-O(5)	-58.8(3)
O(2)-C(9)-C(10)-C(11)	1.3(4)
C(8)-C(9)-C(10)-C(11)	120.6(3)
C(9)-O(2)-C(12)-O(3)	-178.6(3)
C(9)-O(2)-C(12)-C(11)	0.7(4)
C(16)-C(15)-C(20)-C(19)	-2.4(5)
C(8)-C(15)-C(20)-C(19)	179.4(3)
C(2)-C(3)-C(4)-C(5)	0.1(5)
C(2)-C(3)-C(4)-N(2)	176.3(3)
C(8)-N(2)-C(4)-C(3)	51.7(4)
C(8)-N(2)-C(4)-C(5)	-132.0(3)

C(5)-C(6)-C(1)-C(2)	0.5(5)
C(5)-C(6)-C(1)-N(1)	-175.5(4)
C(20)-C(15)-C(16)-C(17)	1.4(5)
C(8)-C(15)-C(16)-C(17)	179.6(3)
C(18)-C(17)-C(16)-C(15)	0.3(5)
C(16)-C(17)-C(18)-C(19)	-1.2(5)
C(16)-C(17)-C(18)-Cl(1)	-179.9(3)
C(1)-C(6)-C(5)-O(1)	177.1(3)
C(1)-C(6)-C(5)-C(4)	-1.4(5)
C(7)-O(1)-C(5)-C(6)	-21.4(6)
C(7)-O(1)-C(5)-C(4)	157.1(4)
C(3)-C(4)-C(5)-C(6)	1.0(5)
N(2)-C(4)-C(5)-C(6)	-175.5(3)
C(3)-C(4)-C(5)-O(1)	-177.5(3)
N(2)-C(4)-C(5)-O(1)	5.9(4)
C(15)-C(20)-C(19)-C(18)	1.6(5)
C(17)-C(18)-C(19)-C(20)	0.3(5)
Cl(1)-C(18)-C(19)-C(20)	179.0(3)
C(9)-C(10)-C(11)-C(12)	-1.0(4)
O(3)-C(12)-C(11)-C(10)	179.4(4)
O(2)-C(12)-C(11)-C(10)	0.2(4)
N(1)-C(1)-C(2)-C(3)	176.6(3)
C(6)-C(1)-C(2)-C(3)	0.6(5)
C(4)-C(3)-C(2)-C(1)	-0.9(5)

d(D-H)	d(HA)	d(DA)	<(DHA)
0.93(3)	2.15(3)	2.627(4)	111(2)
0.86(4)	2.36(4)	3.215(5)	169(4)
0.91(5)	2.44(5)	3.322(5)	162(3)
	d(D-H) 0.93(3) 0.86(4) 0.91(5)	d(D-H)d(HA)0.93(3)2.15(3)0.86(4)2.36(4)0.91(5)2.44(5)	d(D-H)d(HA)d(DA)0.93(3)2.15(3)2.627(4)0.86(4)2.36(4)3.215(5)0.91(5)2.44(5)3.322(5)

Table 7. Hydrogen bonds for EMV01 [Å and °]

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+1,z-1/2 #2 x+1/2,-y+3/2,-z **X**-ray crystal structure of AgOAc-1 complex 12:

<i>Table 1.</i> Crystal data and structure refinem	ent for AgOAc-1 complex	12
Identification code	bc106	
Empirical formula	C70 H79 Ag N4 O7 P2	
Formula weight	1258.18	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 17.451(4) Å	α= 90°.
	b = 17.675(5) Å	β= 90°.
	c = 21.505(6) Å	$\gamma = 90^{\circ}$.
Volume	6633(3) Å ³	
Z	4	
Density (calculated)	1.260 Mg/m ³	
Absorption coefficient	0.406 mm ⁻¹	

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

2640 0.12 x 0.10 x 0.10 mm³ 1.49 to 25.00°. -14<=h<=20, -18<=k<=21, -25<=l<=25 42921 11670 [R(int) = 0.0218]100.0~%Empirical 0.9605 and 0.9528 Full-matrix least-squares on F² 11670 / 2 / 740 1.029 R1 = 0.0316, wR2 = 0.0861R1 = 0.0352, wR2 = 0.0895-0.024(14)0.936 and -0.350 e.Å-3

	Х	у	Z	U(eq)
Ag(1)	2286(1)	3664(1)	502(1)	32(1)
P(1)	1851(1)	2422(1)	838(1)	30(1)
P(2)	2558(1)	4084(1)	-551(1)	30(1)
O(1)	1963(1)	4614(1)	1264(1)	41(1)
O(2)	3193(1)	4342(1)	1256(1)	39(1)
O(3)	5525(1)	3198(1)	2099(1)	49(1)
O(4)	6799(2)	6206(2)	619(1)	66(1)
O(5)	-586(1)	5670(2)	933(1)	60(1)
O(6)	-1202(2)	4128(2)	3532(2)	80(1)
N(1)	4078(1)	2416(1)	1734(1)	33(1)
N(2)	4783(2)	4140(1)	1702(1)	39(1)
N(3)	574(1)	5452(2)	-70(1)	41(1)
N(4)	393(1)	5097(2)	1447(1)	40(1)
C(1)	2630(2)	4683(2)	1479(1)	37(1)
C(2)	2762(3)	5181(3)	2039(2)	86(2)
C(3)	2605(2)	1741(2)	655(1)	35(1)
C(4)	3338(2)	1822(2)	921(1)	34(1)
C(5)	3934(2)	1351(2)	725(1)	43(1)
C(6)	3812(2)	810(2)	270(2)	58(1)
C(7)	3098(2)	724(2)	17(2)	57(1)
C(8)	2495(2)	1187(2)	202(2)	47(1)
C(9)	3489(2)	2412(2)	1387(1)	31(1)
C(10)	4143(2)	3060(2)	2154(1)	33(1)
C(11)	4899(2)	3467(2)	1991(1)	35(1)
C(12)	4086(2)	2829(2)	2846(1)	39(1)
C(13)	3281(2)	2521(2)	2948(2)	55(1)
C(14)	4667(2)	2243(2)	3041(2)	52(1)
C(15)	4188(2)	3557(2)	3228(2)	59(1)
C(16)	5341(2)	4630(2)	1444(1)	40(1)
C(17)	5081(2)	5220(2)	1083(2)	46(1)
C(18)	5581(2)	5726(2)	813(2)	52(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	6333(7)	5658(2)	yny/?/	47(1)
C(20)	6535(2)	5033(2)	1251(2)	47(1) 63(1)
C(20)	6127(2)	4556(2)	1231(2) 1527(2)	64(1)
C(21)	7586(2)	4330(2)	773(2)	70(1)
C(22)	1603(2)	02+6(2)	1649(1)	70(1)
C(23)	1003(2) 1721(2)	1563(2)	1049(1) 1021(2)	30(1)
C(24)	1/21(2) 1/72(2)	1303(2)	1331(2)	49(1)
C(25)	14/2(2) 1120(2)	1430(2)	2342(2)	62(1)
C(20)	1120(2)	2023(3)	2636(2)	64(1)
C(27)	1000(2) 1254(2)	2/14(3)	2379(2) 1077(2)	01(1)
C(28)	1234(2)	2830(2)	1977(2)	44(1)
C(29)	1020(2)	20/5(2)	420(1)	35(1)
C(30)	842(2)	2404(2)	-152(1)	43(1)
C(31)	230(2)	2143(2)	-497(2)	53(1)
C(32)	-218(2)	1565(2)	-273(2)	49(1)
C(33)	-47(2)	1236(2)	284(2)	49(1)
C(34)	564(2)	1486(2)	638(2)	44(1)
C(35)	1692(2)	4137(2)	-1031(1)	32(1)
C(36)	1083(2)	4614(2)	-856(1)	31(1)
C(37)	441(2)	4671(2)	-1243(1)	40(1)
C(38)	390(2)	4236(2)	-1773(2)	46(1)
C(39)	964(2)	3732(2)	-1922(2)	50(1)
C(40)	1619(2)	3691(2)	-1559(1)	42(1)
C(41)	1113(2)	5043(2)	-268(1)	31(1)
C(42)	708(2)	5810(2)	530(2)	39(1)
C(43)	99(2)	5519(2)	982(2)	41(1)
C(44)	735(2)	6683(2)	478(2)	50(1)
C(45)	818(3)	7007(2)	1131(2)	70(1)
C(46)	37(3)	6998(2)	144(2)	73(1)
C(47)	1459(2)	6893(2)	110(2)	61(1)
C(48)	-9(2)	4836(2)	1977(2)	41(1)
C(49)	355(2)	4830(2)	2539(2)	56(1)
C(50)	-15(3)	4601(2)	3080(2)	63(1)
C(51)	-770(2)	4362(2)	3040(2)	57(1)
C(52)	-1130(2)	4344(2)	2470(2)	61(1)
C(53)	-764(2)	4585(2)	1945(2)	54(1)
C(54)	-902(4)	4230(3)	4120(2)	87(2)

C(55)	3205(2)	3482(2)	-996(1)	39(1)
C(56)	3590(2)	3728(2)	-1516(2)	50(1)
C(57)	4075(2)	3246(2)	-1839(2)	62(1)
C(58)	4165(3)	2522(2)	-1649(2)	68(1)
C(59)	3800(3)	2269(2)	-1129(2)	71(1)
C(60)	3310(2)	2742(2)	-800(2)	54(1)
C(61)	2956(2)	5042(2)	-623(1)	31(1)
C(62)	2806(2)	5503(2)	-1125(2)	43(1)
C(63)	3113(2)	6221(2)	-1153(2)	55(1)
C(64)	3570(2)	6478(2)	-673(2)	59(1)
C(65)	3718(2)	6031(2)	-172(2)	53(1)
C(66)	3411(2)	5306(2)	-146(2)	40(1)
O(1S)	6925(8)	3438(7)	3279(7)	314(6)
C(1S)	6727(6)	4760(5)	3235(4)	159(3)
C(2S)	6705(7)	4140(6)	3731(5)	198(5)
C(3S)	6820(9)	2876(8)	3890(6)	245(6)
C(4S)	6947(10)	2135(9)	3497(8)	299(8)

Ag(1)-O(1)	2.413(2)	Ag(1)-P(2)	2.4306(9)
Ag(1)-P(1)	2.4328(9)	Ag(1)-O(2)	2.562(2)
P(1)-C(29)	1.813(3)	P(1)-C(23)	1.820(3)
P(1)-C(3)	1.826(3)	P(2)-C(55)	1.824(3)
P(2)-C(35)	1.831(3)	P(2)-C(61)	1.836(3)
O(1)-C(1)	1.257(4)	O(2)-C(1)	1.248(4)
O(3)-C(11)	1.213(4)	O(4)-C(19)	1.389(4)
O(4)-C(22)	1.413(5)	O(5)-C(43)	1.229(4)
O(6)-C(51)	1.362(5)	O(6)-C(54)	1.381(6)
N(1)-C(9)	1.271(4)	N(1)-C(10)	1.457(4)
N(2)-C(11)	1.358(4)	N(2)-C(16)	1.416(4)
N(2)-H(2)	0.8800	N(3)-C(41)	1.260(4)
N(3)-C(42)	1.456(4)	N(4)-C(43)	1.349(4)
N(4)-C(48)	1.416(4)	N(4)-H(4)	0.8800
C(1)-C(2)	1.510(5)	C(2)-H(2A)	0.9800
C(2)-H(2B)	0.9800	C(2)-H(2C)	0.9800
C(3)-C(8)	1.396(4)	C(3)-C(4)	1.408(4)
C(4)-C(5)	1.397(4)	C(4)-C(9)	1.470(4)
C(5)-C(6)	1.384(5)	C(5)-H(5)	0.9500
C(6)-C(7)	1.368(6)	C(6)-H(6)	0.9500
C(7)-C(8)	1.391(5)	C(7)-H(7)	0.9500
C(8)-H(8)	0.9500	C(9)-H(9)	0.9500
C(10)-C(11)	1.543(4)	C(10)-C(12)	1.546(4)
C(10)-H(10)	1.0000	C(12)-C(14)	1.509(5)
C(12)-C(13)	1.521(5)	C(12)-C(15)	1.537(5)
C(13)-H(13A)	0.9800	C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800	C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800	C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800	C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800	C(16)-C(17)	1.377(5)
C(16)-C(21)	1.389(5)	C(17)-C(18)	1.377(5)
C(17)-H(17)	0.9500	C(18)-C(19)	1.372(5)
C(18)-H(18)	0.9500	C(19)-C(20)	1.340(5)
C(20)-C(21)	1.403(5)	C(20)-H(20)	0.9500

Table 3. Bond lengths [Å] and angles [°]

C(21)-H(21)	0.9500	C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800	C(22)-H(22C)	0.9800
C(23)-C(24)	1.382(5)	C(23)-C(28)	1.385(5)
C(24)-C(25)	1.396(5)	C(24)-H(24)	0.9500
C(25)-C(26)	1.361(6)	C(25)-H(25)	0.9500
C(26)-C(27)	1.373(6)	C(26)-H(26)	0.9500
C(27)-C(28)	1.387(5)	C(27)-H(27)	0.9500
C(28)-H(28)	0.9500	C(29)-C(34)	1.391(4)
C(29)-C(30)	1.395(4)	C(30)-C(31)	1.381(5)
C(30)-H(30)	0.9500	C(31)-C(32)	1.375(5)
C(31)-H(31)	0.9500	C(32)-C(33)	1.363(5)
C(32)-H(32)	0.9500	C(33)-C(34)	1.383(5)
С(33)-Н(33)	0.9500	C(34)-H(34)	0.9500
C(35)-C(40)	1.388(4)	C(35)-C(36)	1.409(4)
C(36)-C(37)	1.398(4)	C(36)-C(41)	1.475(4)
C(37)-C(38)	1.378(5)	C(37)-H(37)	0.9500
C(38)-C(39)	1.378(5)	C(38)-H(38)	0.9500
C(39)-C(40)	1.386(5)	C(39)-H(39)	0.9500
C(40)-H(40)	0.9500	C(41)-H(41)	0.9500
C(42)-C(43)	1.530(5)	C(42)-C(44)	1.548(4)
C(42)-H(42)	1.0000	C(44)-C(45)	1.525(5)
C(44)-C(46)	1.519(6)	C(44)-C(47)	1.536(5)
C(45)-H(45A)	0.9800	C(45)-H(45B)	0.9800
C(45)-H(45C)	0.9800	C(46)-H(46A)	0.9800
C(46)-H(46B)	0.9800	C(46)-H(46C)	0.9800
C(47)-H(47A)	0.9800	C(47)-H(47B)	0.9800
C(47)-H(47C)	0.9800	C(48)-C(49)	1.366(5)
C(48)-C(53)	1.392(5)	C(49)-C(50)	1.390(5)
C(49)-H(49)	0.9500	C(50)-C(51)	1.387(6)
C(50)-H(50)	0.9500	C(51)-C(52)	1.378(6)
C(52)-C(53)	1.365(5)	C(52)-H(52)	0.9500
С(53)-Н(53)	0.9500	C(54)-H(54A)	0.9800
C(54)-H(54B)	0.9800	C(54)-H(54C)	0.9800
C(55)-C(56)	1.374(5)	C(55)-C(60)	1.387(5)
C(56)-C(57)	1.388(5)	C(56)-H(56)	0.9500
C(57)-C(58)	1.351(6)	C(57)-H(57)	0.9500

C(58)-C(59)	1.363(6)	C(58)-H(58)	0.9500
C(59)-C(60)	1.390(5)	C(59)-H(59)	0.9500
C(60)-H(60)	0.9500	C(61)-C(62)	1.378(4)
C(61)-C(66)	1.380(4)	C(62)-C(63)	1.378(5)
C(62)-H(62)	0.9500	C(63)-C(64)	1.382(5)
C(63)-H(63)	0.9500	C(64)-C(65)	1.362(5)
C(64)-H(64)	0.9500	C(65)-C(66)	1.390(5)
C(65)-H(65)	0.9500	C(66)-H(66)	0.9500
O(1S)-C(2S)	1.622(13)	O(1S)-C(3S)	1.657(14)
C(1S)-C(2S)	1.530(11)	C(1S)-H(1S1)	0.9800
C(1S)-H(1S2)	0.9800	C(1S)-H(1S3)	0.9800
C(2S)-H(2S1)	0.9900	C(2S)-H(2S2)	0.9900
C(3S)-C(4S)	1.574(14)	C(3S)-H(3S1)	0.9900
C(3S)-H(3S2)	0.9900	C(4S)-H(4S1)	0.9800
C(4S)-H(4S2)	0.9800	C(4S)-H(4S3)	0.9800
O(1)-Ag(1)-P(2)	117.79(6)	O(1)-Ag(1)-P(1)	110.69(6)
P(2)-Ag(1)-P(1)	127.81(2)	O(1)-Ag(1)-O(2)	52.37(7)
P(2)-Ag(1)-O(2)	109.06(5)	P(1)-Ag(1)-O(2)	115.26(5)
C(29)-P(1)-C(23)	103.34(13)	C(29)-P(1)-C(3)	104.21(13)
C(23)-P(1)-C(3)	105.75(13)	C(29)-P(1)-Ag(1)	114.08(10)
C(23)-P(1)-Ag(1)	120.28(10)	C(3)-P(1)-Ag(1)	107.81(10)
C(55)-P(2)-C(35)	104.18(13)	C(55)-P(2)-C(61)	105.01(13)
C(35)-P(2)-C(61)	102.55(12)	C(55)-P(2)-Ag(1)	115.58(10)
C(35)-P(2)-Ag(1)	112.35(9)	C(61)-P(2)-Ag(1)	115.72(9)
C(1)-O(1)-Ag(1)	95.73(17)	C(1)-O(2)-Ag(1)	88.98(17)
C(19)-O(4)-C(22)	118.3(3)	C(51)-O(6)-C(54)	117.6(4)
C(9)-N(1)-C(10)	115.6(2)	C(11)-N(2)-C(16)	127.8(3)
C(11)-N(2)-H(2)	116.1	C(16)-N(2)-H(2)	116.1
C(41)-N(3)-C(42)	115.3(2)	C(43)-N(4)-C(48)	126.0(3)
C(43)-N(4)-H(4)	117.0	C(48)-N(4)-H(4)	117.0
O(2)-C(1)-O(1)	122.8(3)	O(2)-C(1)-C(2)	117.9(3)
O(1)-C(1)-C(2)	119.3(3)	C(1)-C(2)-H(2A)	109.1
C(1)-C(2)-H(2B)	110.7	H(2A)-C(2)-H(2B)	109.5
C(1)-C(2)-H(2C)	108.6	H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5	C(8)-C(3)-C(4)	118.6(3)

C(8)-C(3)-P(1)	121.0(2)	C(4)-C(3)-P(1)	120.0(2)
C(5)-C(4)-C(3)	119.6(3)	C(5)-C(4)-C(9)	119.6(3)
C(3)-C(4)-C(9)	120.8(3)	C(6)-C(5)-C(4)	120.6(3)
C(6)-C(5)-H(5)	119.7	C(4)-C(5)-H(5)	119.7
C(7)-C(6)-C(5)	119.9(3)	C(7)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0	C(6)-C(7)-C(8)	120.6(3)
C(6)-C(7)-H(7)	119.7	C(8)-C(7)-H(7)	119.7
C(7)-C(8)-C(3)	120.6(3)	C(7)-C(8)-H(8)	119.7
C(3)-C(8)-H(8)	119.7	N(1)-C(9)-C(4)	123.4(3)
N(1)-C(9)-H(9)	118.3	C(4)-C(9)-H(9)	118.3
N(1)-C(10)-C(11)	106.8(2)	N(1)-C(10)-C(12)	112.6(2)
C(11)-C(10)-C(12)	113.4(2)	N(1)-C(10)-H(10)	107.9
C(11)-C(10)-H(10)	107.9	C(12)-C(10)-H(10)	107.9
O(3)-C(11)-N(2)	124.4(3)	O(3)-C(11)-C(10)	123.0(3)
N(2)-C(11)-C(10)	112.6(2)	C(14)-C(12)-C(13)	109.6(3)
C(14)-C(12)-C(15)	110.3(3)	C(13)-C(12)-C(15)	109.2(3)
C(14)-C(12)-C(10)	113.9(3)	C(13)-C(12)-C(10)	107.0(3)
C(15)-C(12)-C(10)	106.6(3)	C(12)-C(13)-H(13A)	109.5
С(12)-С(13)-Н(13В)	109.5	H(13A)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5	H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5	C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5	H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5	H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5	C(12)-C(15)-H(15A)	109.5
C(12)-C(15)-H(15B)	109.5	H(15A)-C(15)-H(15B)	109.5
C(12)-C(15)-H(15C)	109.5	H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5	C(17)-C(16)-C(21)	117.9(3)
C(17)-C(16)-N(2)	117.2(3)	C(21)-C(16)-N(2)	124.8(3)
C(16)-C(17)-C(18)	121.4(3)	C(16)-C(17)-H(17)	119.3
C(18)-C(17)-H(17)	119.3	C(19)-C(18)-C(17)	120.2(3)
C(19)-C(18)-H(18)	119.9	C(17)-C(18)-H(18)	119.9
C(20)-C(19)-C(18)	119.6(3)	C(20)-C(19)-O(4)	125.4(3)
C(18)-C(19)-O(4)	114.9(3)	C(19)-C(20)-C(21)	121.2(4)
С(19)-С(20)-Н(20)	119.4	C(21)-C(20)-H(20)	119.4
C(16)-C(21)-C(20)	119.6(3)	C(16)-C(21)-H(21)	120.2
C(20)-C(21)-H(21)	120.2	O(4)-C(22)-H(22A)	109.5

O(4)-C(22)-H(22B)	109.5	H(22A)-C(22)-H(22B)	109.5
O(4)-C(22)-H(22C)	109.5	H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5	C(24)-C(23)-C(28)	119.8(3)
C(24)-C(23)-P(1)	121.9(2)	C(28)-C(23)-P(1)	118.2(2)
C(23)-C(24)-C(25)	119.2(4)	C(23)-C(24)-H(24)	120.4
C(25)-C(24)-H(24)	120.4	C(26)-C(25)-C(24)	120.6(4)
C(26)-C(25)-H(25)	119.7	C(24)-C(25)-H(25)	119.7
C(25)-C(26)-C(27)	120.5(3)	C(25)-C(26)-H(26)	119.8
C(27)-C(26)-H(26)	119.8	C(26)-C(27)-C(28)	119.8(4)
С(26)-С(27)-Н(27)	120.1	С(28)-С(27)-Н(27)	120.1
C(23)-C(28)-C(27)	120.1(3)	C(23)-C(28)-H(28)	120.0
C(27)-C(28)-H(28)	120.0	C(34)-C(29)-C(30)	118.8(3)
C(34)-C(29)-P(1)	122.9(2)	C(30)-C(29)-P(1)	118.3(2)
C(31)-C(30)-C(29)	120.5(3)	C(31)-C(30)-H(30)	119.8
С(29)-С(30)-Н(30)	119.8	C(32)-C(31)-C(30)	119.9(3)
C(32)-C(31)-H(31)	120.0	C(30)-C(31)-H(31)	120.0
C(33)-C(32)-C(31)	120.1(3)	C(33)-C(32)-H(32)	120.0
C(31)-C(32)-H(32)	120.0	C(32)-C(33)-C(34)	121.0(3)
С(32)-С(33)-Н(33)	119.5	C(34)-C(33)-H(33)	119.5
C(33)-C(34)-C(29)	119.7(3)	C(33)-C(34)-H(34)	120.2
C(29)-C(34)-H(34)	120.2	C(40)-C(35)-C(36)	119.3(3)
C(40)-C(35)-P(2)	120.5(2)	C(36)-C(35)-P(2)	120.2(2)
C(37)-C(36)-C(35)	119.2(3)	C(37)-C(36)-C(41)	120.1(3)
C(35)-C(36)-C(41)	120.6(3)	C(38)-C(37)-C(36)	120.3(3)
C(38)-C(37)-H(37)	119.9	С(36)-С(37)-Н(37)	119.9
C(39)-C(38)-C(37)	120.4(3)	C(39)-C(38)-H(38)	119.8
C(37)-C(38)-H(38)	119.8	C(38)-C(39)-C(40)	120.2(3)
C(38)-C(39)-H(39)	119.9	C(40)-C(39)-H(39)	119.9
C(35)-C(40)-C(39)	120.4(3)	C(35)-C(40)-H(40)	119.8
C(39)-C(40)-H(40)	119.8	N(3)-C(41)-C(36)	123.8(3)
N(3)-C(41)-H(41)	118.1	C(36)-C(41)-H(41)	118.1
N(3)-C(42)-C(43)	107.8(2)	N(3)-C(42)-C(44)	112.0(3)
C(43)-C(42)-C(44)	113.6(3)	N(3)-C(42)-H(42)	107.7
C(43)-C(42)-H(42)	107.7	C(44)-C(42)-H(42)	107.7
O(5)-C(43)-N(4)	123.6(3)	O(5)-C(43)-C(42)	123.2(3)
N(4)-C(43)-C(42)	113.1(3)	C(45)-C(44)-C(46)	111.9(3)

C(45)-C(44)-C(47)	107.7(3)	C(46)-C(44)-C(47)	109.2(3)
C(45)-C(44)-C(42)	108.1(3)	C(46)-C(44)-C(42)	112.1(3)
C(47)-C(44)-C(42)	107.7(3)	C(44)-C(45)-H(45A)	109.5
C(44)-C(45)-H(45B)	109.5	H(45A)-C(45)-H(45B)	109.5
C(44)-C(45)-H(45C)	109.5	H(45A)-C(45)-H(45C)	109.5
H(45B)-C(45)-H(45C)	109.5	C(44)-C(46)-H(46A)	109.5
C(44)-C(46)-H(46B)	109.5	H(46A)-C(46)-H(46B)	109.5
C(44)-C(46)-H(46C)	109.5	H(46A)-C(46)-H(46C)	109.5
H(46B)-C(46)-H(46C)	109.5	C(44)-C(47)-H(47A)	109.5
C(44)-C(47)-H(47B)	109.5	H(47A)-C(47)-H(47B)	109.5
C(44)-C(47)-H(47C)	109.5	H(47A)-C(47)-H(47C)	109.5
H(47B)-C(47)-H(47C)	109.5	C(49)-C(48)-C(53)	118.8(3)
C(49)-C(48)-N(4)	119.0(3)	C(53)-C(48)-N(4)	122.2(3)
C(48)-C(49)-C(50)	121.8(4)	C(48)-C(49)-H(49)	119.1
C(50)-C(49)-H(49)	119.1	C(51)-C(50)-C(49)	118.6(4)
C(51)-C(50)-H(50)	120.7	C(49)-C(50)-H(50)	120.7
O(6)-C(51)-C(52)	115.6(4)	O(6)-C(51)-C(50)	124.7(4)
C(52)-C(51)-C(50)	119.7(4)	C(53)-C(52)-C(51)	121.0(4)
C(53)-C(52)-H(52)	119.5	C(51)-C(52)-H(52)	119.5
C(52)-C(53)-C(48)	120.2(4)	C(52)-C(53)-H(53)	119.9
C(48)-C(53)-H(53)	119.9	O(6)-C(54)-H(54A)	109.5
O(6)-C(54)-H(54B)	109.5	H(54A)-C(54)-H(54B)	109.5
O(6)-C(54)-H(54C)	109.5	H(54A)-C(54)-H(54C)	109.5
H(54B)-C(54)-H(54C)	109.5	C(56)-C(55)-C(60)	118.8(3)
C(56)-C(55)-P(2)	123.0(2)	C(60)-C(55)-P(2)	118.2(2)
C(55)-C(56)-C(57)	120.7(4)	C(55)-C(56)-H(56)	119.7
C(57)-C(56)-H(56)	119.7	C(58)-C(57)-C(56)	120.0(4)
C(58)-C(57)-H(57)	120.0	C(56)-C(57)-H(57)	120.0
C(57)-C(58)-C(59)	120.4(4)	C(57)-C(58)-H(58)	119.8
C(59)-C(58)-H(58)	119.8	C(58)-C(59)-C(60)	120.5(4)
C(58)-C(59)-H(59)	119.8	C(60)-C(59)-H(59)	119.8
C(59)-C(60)-C(55)	119.6(3)	C(59)-C(60)-H(60)	120.2
C(55)-C(60)-H(60)	120.2	C(62)-C(61)-C(66)	119.4(3)
C(62)-C(61)-P(2)	122.7(2)	C(66)-C(61)-P(2)	117.8(2)
C(61)-C(62)-C(63)	120.4(3)	C(61)-C(62)-H(62)	119.8
C(63)-C(62)-H(62)	119.8	C(62)-C(63)-C(64)	119.7(3)

C(62)-C(63)-H(63)	120.2	C(64)-C(63)-H(63)	120.2
C(65)-C(64)-C(63)	120.6(3)	C(65)-C(64)-H(64)	119.7
C(63)-C(64)-H(64)	119.7	C(64)-C(65)-C(66)	119.6(3)
C(64)-C(65)-H(65)	120.2	C(66)-C(65)-H(65)	120.2
C(61)-C(66)-C(65)	120.3(3)	C(61)-C(66)-H(66)	119.9
C(65)-C(66)-H(66)	119.9	C(2S)-O(1S)-C(3S)	87.6(10)
C(2S)-C(1S)-H(1S1)	107.3	C(2S)-C(1S)-H(1S2)	109.8
H(1S1)-C(1S)-H(1S2)	109.5	C(2S)-C(1S)-H(1S3)	111.3
H(1S1)-C(1S)-H(1S3)	109.5	H(1S2)-C(1S)-H(1S3)	109.5
C(1S)-C(2S)-O(1S)	97.1(9)	C(1S)-C(2S)-H(2S1)	109.6
O(1S)-C(2S)-H(2S1)	117.3	C(1S)-C(2S)-H(2S2)	111.5
O(1S)-C(2S)-H(2S2)	112.7	H(2S1)-C(2S)-H(2S2)	108.1
C(4S)-C(3S)-O(1S)	93.3(11)	C(4S)-C(3S)-H(3S1)	111.3
O(1S)-C(3S)-H(3S1)	112.9	C(4S)-C(3S)-H(3S2)	113.1
O(1S)-C(3S)-H(3S2)	116.1	H(3S1)-C(3S)-H(3S2)	109.3
C(3S)-C(4S)-H(4S1)	107.8	C(3S)-C(4S)-H(4S2)	109.5
H(4S1)-C(4S)-H(4S2)	109.5	C(3S)-C(4S)-H(4S3)	111.1
H(4S1)-C(4S)-H(4S3)	109.5	H(4S2)-C(4S)-H(4S3)	109.5

	* *		T T a a		T T (a	T T (a
	U^{11}	U^{22}	\bigcup_{33}	U^{23}	U^{13}	U^{12}
$\overline{Ag(1)}$	37(1)	29(1)	30(1)	0(1)	0(1)	0(1)
P(1)	33(1)	30(1)	28(1)	0(1)	-4(1)	-2(1)
P(2)	33(1)	29(1)	28(1)	-1(1)	4(1)	0(1)
O(1)	35(1)	44(1)	45(1)	-6(1)	-2(1)	7(1)
O(2)	31(1)	44(1)	43(1)	1(1)	-3(1)	6(1)
O(3)	31(1)	57(1)	60(1)	14(1)	-4(1)	2(1)
O(4)	64(2)	70(2)	62(2)	12(1)	0(1)	-26(1)
O(5)	34(1)	87(2)	58(2)	11(1)	5(1)	16(1)
O(6)	76(2)	94(2)	70(2)	13(2)	11(2)	-18(2)
N(1)	33(1)	40(1)	26(1)	-1(1)	-2(1)	5(1)
N(2)	31(1)	44(1)	43(1)	4(1)	-3(1)	0(1)
N(3)	33(1)	51(2)	39(1)	-5(1)	-3(1)	8(1)
N(4)	30(1)	47(1)	42(1)	-4(1)	4(1)	6(1)
C(1)	42(2)	35(1)	33(1)	-3(1)	-1(1)	3(1)
C(2)	76(3)	109(4)	73(3)	-49(3)	-18(3)	14(3)
C(3)	44(2)	31(1)	30(1)	2(1)	-4(1)	1(1)
C(4)	42(2)	33(1)	28(1)	3(1)	-3(1)	1(1)
C(5)	46(2)	45(2)	39(2)	-3(1)	-6(1)	13(2)
C(6)	71(2)	52(2)	50(2)	-12(2)	-8(2)	23(2)
C(7)	75(3)	46(2)	50(2)	-20(2)	-14(2)	16(2)
C(8)	58(2)	39(2)	45(2)	-10(1)	-12(2)	4(1)
C(9)	29(1)	35(1)	30(1)	0(1)	3(1)	3(1)
C(10)	29(1)	37(2)	33(1)	-1(1)	-3(1)	3(1)
C(11)	34(2)	39(2)	32(1)	1(1)	-3(1)	1(1)
C(12)	41(2)	47(2)	29(1)	-7(1)	2(1)	2(1)
C(13)	51(2)	69(2)	45(2)	-3(2)	14(2)	-7(2)
C(14)	64(2)	58(2)	32(2)	9(1)	1(2)	9(2)
C(15)	72(2)	62(2)	43(2)	-19(2)	4(2)	3(2)
C(16)	37(2)	43(2)	39(2)	2(1)	-2(1)	-8(1)
C(17)	42(2)	47(2)	50(2)	5(2)	-12(2)	-7(2)
C(18)	59(2)	49(2)	48(2)	7(2)	-11(2)	-12(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for bc106. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(19)	56(2)	45(2)	42(2)	-3(1)	-2(2)	-14(2)
C(20)	38(2)	69(2)	81(3)	7(2)	5(2)	-4(2)
C(21)	41(2)	63(2)	87(3)	26(2)	-6(2)	-1(2)
C(22)	53(2)	54(2)	104(3)	-12(2)	22(2)	-20(2)
C(23)	34(2)	44(2)	30(1)	-2(1)	-3(1)	-12(1)
C(24)	62(2)	47(2)	38(2)	4(1)	-2(2)	-16(2)
C(25)	77(3)	65(2)	44(2)	20(2)	-12(2)	-27(2)
C(26)	51(2)	110(4)	33(2)	1(2)	5(2)	-27(2)
C(27)	47(2)	95(3)	39(2)	-14(2)	0(2)	-4(2)
C(28)	39(2)	56(2)	38(2)	-5(2)	-5(1)	-2(2)
C(29)	36(2)	36(1)	34(1)	-4(1)	-5(1)	-1(1)
C(30)	43(2)	45(2)	40(2)	3(1)	-8(1)	-6(1)
C(31)	53(2)	65(2)	40(2)	-6(2)	-15(2)	-1(2)
C(32)	35(2)	63(2)	48(2)	-17(2)	-9(1)	-6(2)
C(33)	42(2)	52(2)	52(2)	-8(2)	2(1)	-14(2)
C(34)	46(2)	45(2)	40(2)	0(1)	-7(1)	-11(1)
C(35)	38(2)	29(1)	30(1)	2(1)	3(1)	-8(1)
C(36)	32(1)	29(1)	33(1)	2(1)	4(1)	-8(1)
C(37)	34(2)	45(2)	40(2)	4(1)	2(1)	-9(1)
C(38)	37(2)	64(2)	38(2)	2(2)	-6(1)	-13(2)
C(39)	51(2)	63(2)	36(2)	-12(2)	1(1)	-20(2)
C(40)	43(2)	46(2)	36(1)	-7(1)	3(1)	-8(2)
C(41)	27(1)	34(1)	33(1)	2(1)	-1(1)	-1(1)
C(42)	32(1)	48(2)	36(1)	-5(1)	0(1)	10(1)
C(43)	34(2)	50(2)	40(2)	-8(1)	1(1)	7(1)
C(44)	53(2)	44(2)	53(2)	-4(2)	9(2)	13(1)
C(45)	84(3)	56(2)	69(3)	-22(2)	16(2)	-1(2)
C(46)	74(3)	58(2)	88(3)	4(2)	5(2)	30(2)
C(47)	71(3)	52(2)	61(2)	0(2)	10(2)	1(2)
C(48)	38(2)	37(2)	48(2)	-5(1)	7(1)	3(1)
C(49)	51(2)	68(2)	50(2)	-2(2)	2(2)	-17(2)
C(50)	73(3)	71(3)	45(2)	4(2)	-2(2)	-10(2)
C(51)	59(2)	48(2)	64(2)	0(2)	24(2)	-4(2)
C(52)	54(2)	64(2)	65(2)	4(2)	5(2)	-8(2)
C(53)	44(2)	52(2)	66(2)	2(2)	0(2)	-4(2)
C(54)	131(5)	75(3)	56(2)	0(2)	4(3)	-16(3)

C(55)	37(2)	44(2)	34(1)	-5(1)	2(1)	5(1)
C(56)	54(2)	49(2)	47(2)	-2(2)	13(2)	6(2)
C(57)	54(2)	76(3)	55(2)	-9(2)	21(2)	6(2)
C(58)	64(3)	59(2)	80(3)	-22(2)	22(2)	11(2)
C(59)	87(3)	42(2)	83(3)	-2(2)	25(2)	15(2)
C(60)	68(2)	39(2)	56(2)	-2(2)	21(2)	8(2)
C(61)	26(1)	32(1)	35(1)	0(1)	4(1)	1(1)
C(62)	40(2)	45(2)	43(2)	8(1)	-5(1)	-6(2)
C(63)	45(2)	51(2)	68(2)	23(2)	-10(2)	-7(2)
C(64)	46(2)	40(2)	92(3)	14(2)	-11(2)	-12(2)
C(65)	49(2)	48(2)	62(2)	0(2)	-17(2)	-9(2)
C(66)	38(2)	38(2)	44(2)	5(1)	-5(1)	-2(1)

	Х	у	Z	U(eq)
H(2)	4304	4289	1671	47
H(4)	880	4972	1418	48
H(2A)	3229	5016	2252	128
H(2B)	2327	5152	2326	128
H(2C)	2826	5704	1896	128
H(5)	4428	1401	906	52
H(6)	4223	500	133	69
H(7)	3013	344	-288	68
H(8)	2004	1125	17	57
H(9)	3127	2810	1431	38
H(10)	3711	3414	2062	40
H(13A)	3227	2036	2731	83
H(13B)	2905	2882	2784	83
H(13C)	3194	2447	3394	83
H(14A)	4583	2108	3478	77
H(14B)	5184	2450	2992	77
H(14C)	4611	1791	2781	77
H(15A)	3797	3926	3107	89
H(15B)	4698	3769	3150	89
H(15C)	4135	3440	3672	89
H(17)	4546	5279	1019	55
H(18)	5389	6123	559	63
H(20)	7161	5030	1308	75
H(21)	6326	4152	1768	77
H(22A)	7642	6299	1224	105
H(22B)	7815	6688	567	105
H(22C)	7845	5787	633	105
H(24)	1967	1165	1712	59
H(25)	1550	981	2739	75
H(26)	957	1945	3274	77
H(27)	742	3105	2799	73
H(28)	1189	3318	1789	53

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

H(30)	1145	2811	-304	51
H(31)	119	2363	-890	63
H(32)	-647	1394	-506	58
H(33)	-353	828	430	59
H(34)	672	1257	1028	52
H(37)	39	5011	-1140	48
H(38)	-43	4284	-2038	56
H(39)	910	3411	-2274	60
H(40)	2021	3356	-1673	50
H(41)	1565	5008	-24	38
H(42)	1219	5635	684	46
H(45A)	910	7553	1105	105
H(45B)	1251	6763	1341	105
H(45C)	347	6912	1367	105
H(46A)	56	7552	151	110
H(46B)	-429	6825	355	110
H(46C)	34	6820	-287	110
H(47A)	1420	6693	-313	92
H(47B)	1910	6675	316	92
H(47C)	1510	7445	95	92
H(49)	875	4987	2562	68
H(50)	244	4608	3469	76
H(52)	-1641	4161	2441	73
H(53)	-1024	4581	1558	65
H(54A)	-486	3868	4189	131
H(54B)	-1305	4149	4430	131
H(54C)	-703	4747	4158	131
H(56)	3523	4234	-1655	60
H(57)	4344	3424	-2194	74
H(58)	4483	2189	-1880	81
H(59)	3882	1765	-990	85
H(60)	3049	2559	-442	65
H(62)	2490	5326	-1454	51
H(63)	3010	6537	-1501	65
H(64)	3784	6972	-694	71
H(65)	4029	6213	158	64

H(66)	3515	4991	202	48
H(1S1)	7058	5164	3392	239
H(1S2)	6209	4959	3167	239
H(1S3)	6932	4568	2842	239
H(2S1)	6193	4130	3930	237
H(2S2)	7092	4228	4060	237
H(3S1)	7229	2943	4204	294
H(3S2)	6315	2892	4098	294
H(4S1)	6491	1817	3545	449
H(4S2)	7397	1864	3654	449
H(4S3)	7022	2254	3056	449

<i>Table 6.</i> Torsion angles [°]	
O(1)-Ag(1)-P(1)-C(29)	106.45(12)
P(2)-Ag(1)-P(1)-C(29)	-51.05(11)
O(2)-Ag(1)-P(1)-C(29)	163.53(11)
O(1)-Ag(1)-P(1)-C(23)	-17.16(13)
P(2)-Ag(1)-P(1)-C(23)	-174.67(12)
O(2)-Ag(1)-P(1)-C(23)	39.92(13)
O(1)-Ag(1)-P(1)-C(3)	-138.34(10)
P(2)-Ag(1)-P(1)-C(3)	64.16(10)
O(2)-Ag(1)-P(1)-C(3)	-81.26(10)
O(1)-Ag(1)-P(2)-C(55)	152.20(12)
P(1)-Ag(1)-P(2)-C(55)	-51.67(12)
O(2)-Ag(1)-P(2)-C(55)	95.44(12)
O(1)-Ag(1)-P(2)-C(35)	-88.44(11)
P(1)-Ag(1)-P(2)-C(35)	67.70(10)
O(2)-Ag(1)-P(2)-C(35)	-145.20(11)
O(1)-Ag(1)-P(2)-C(61)	28.87(11)
P(1)-Ag(1)-P(2)-C(61)	-174.99(9)
O(2)-Ag(1)-P(2)-C(61)	-27.89(11)
P(2)-Ag(1)-O(1)-C(1)	-95.56(17)
P(1)-Ag(1)-O(1)-C(1)	104.42(17)
O(2)-Ag(1)-O(1)-C(1)	-2.13(16)
O(1)-Ag(1)-O(2)-C(1)	2.13(16)
P(2)-Ag(1)-O(2)-C(1)	113.02(16)
P(1)-Ag(1)-O(2)-C(1)	-95.30(17)
Ag(1)-O(2)-C(1)-O(1)	-3.9(3)
Ag(1)-O(2)-C(1)-C(2)	174.6(3)
Ag(1)-O(1)-C(1)-O(2)	4.1(3)
Ag(1)-O(1)-C(1)-C(2)	-174.3(3)
C(29)-P(1)-C(3)-C(8)	9.1(3)
C(23)-P(1)-C(3)-C(8)	117.7(2)
Ag(1)-P(1)-C(3)-C(8)	-112.4(2)
C(29)-P(1)-C(3)-C(4)	-178.1(2)
C(23)-P(1)-C(3)-C(4)	-69.5(2)
Ag(1)-P(1)-C(3)-C(4)	60.4(2)
C(8)-C(3)-C(4)-C(5)	0.1(4)

P(1)-C(3)-C(4)-C(5)	-172.8(2)
C(8)-C(3)-C(4)-C(9)	178.2(3)
P(1)-C(3)-C(4)-C(9)	5.3(4)
C(3)-C(4)-C(5)-C(6)	0.5(5)
C(9)-C(4)-C(5)-C(6)	-177.6(3)
C(4)-C(5)-C(6)-C(7)	-1.4(6)
C(5)-C(6)-C(7)-C(8)	1.6(6)
C(6)-C(7)-C(8)-C(3)	-1.0(6)
C(4)-C(3)-C(8)-C(7)	0.1(5)
P(1)-C(3)-C(8)-C(7)	172.9(3)
C(10)-N(1)-C(9)-C(4)	178.0(2)
C(5)-C(4)-C(9)-N(1)	-17.1(4)
C(3)-C(4)-C(9)-N(1)	164.8(3)
C(9)-N(1)-C(10)-C(11)	-120.4(3)
C(9)-N(1)-C(10)-C(12)	114.5(3)
C(16)-N(2)-C(11)-O(3)	3.7(5)
C(16)-N(2)-C(11)-C(10)	-174.5(3)
N(1)-C(10)-C(11)-O(3)	-70.0(4)
C(12)-C(10)-C(11)-O(3)	54.7(4)
N(1)-C(10)-C(11)-N(2)	108.3(3)
C(12)-C(10)-C(11)-N(2)	-127.0(3)
N(1)-C(10)-C(12)-C(14)	56.4(4)
C(11)-C(10)-C(12)-C(14)	-65.1(3)
N(1)-C(10)-C(12)-C(13)	-64.9(3)
C(11)-C(10)-C(12)-C(13)	173.6(3)
N(1)-C(10)-C(12)-C(15)	178.3(3)
C(11)-C(10)-C(12)-C(15)	56.8(3)
C(11)-N(2)-C(16)-C(17)	169.4(3)
C(11)-N(2)-C(16)-C(21)	-10.2(5)
C(21)-C(16)-C(17)-C(18)	-0.3(5)
N(2)-C(16)-C(17)-C(18)	-180.0(3)
C(16)-C(17)-C(18)-C(19)	-1.2(6)
C(17)-C(18)-C(19)-C(20)	2.1(6)
C(17)-C(18)-C(19)-O(4)	-179.2(3)
C(22)-O(4)-C(19)-C(20)	-11.2(5)
C(22)-O(4)-C(19)-C(18)	170.2(3)

C(18)-C(19)-C(20)-C(21)	-1.5(6)
O(4)-C(19)-C(20)-C(21)	179.9(4)
C(17)-C(16)-C(21)-C(20)	0.9(6)
N(2)-C(16)-C(21)-C(20)	-179.5(4)
C(19)-C(20)-C(21)-C(16)	0.0(7)
C(29)-P(1)-C(23)-C(24)	84.0(3)
C(3)-P(1)-C(23)-C(24)	-25.2(3)
Ag(1)-P(1)-C(23)-C(24)	-147.4(2)
C(29)-P(1)-C(23)-C(28)	-92.9(3)
C(3)-P(1)-C(23)-C(28)	157.9(2)
Ag(1)-P(1)-C(23)-C(28)	35.8(3)
C(28)-C(23)-C(24)-C(25)	1.1(5)
P(1)-C(23)-C(24)-C(25)	-175.8(3)
C(23)-C(24)-C(25)-C(26)	-0.1(6)
C(24)-C(25)-C(26)-C(27)	0.4(6)
C(25)-C(26)-C(27)-C(28)	-1.5(6)
C(24)-C(23)-C(28)-C(27)	-2.2(5)
P(1)-C(23)-C(28)-C(27)	174.7(3)
C(26)-C(27)-C(28)-C(23)	2.4(5)
C(23)-P(1)-C(29)-C(34)	-30.4(3)
C(3)-P(1)-C(29)-C(34)	80.0(3)
Ag(1)-P(1)-C(29)-C(34)	-162.7(2)
C(23)-P(1)-C(29)-C(30)	151.0(2)
C(3)-P(1)-C(29)-C(30)	-98.7(3)
Ag(1)-P(1)-C(29)-C(30)	18.6(3)
C(34)-C(29)-C(30)-C(31)	-0.8(5)
P(1)-C(29)-C(30)-C(31)	177.9(3)
C(29)-C(30)-C(31)-C(32)	1.3(5)
C(30)-C(31)-C(32)-C(33)	-1.6(5)
C(31)-C(32)-C(33)-C(34)	1.5(5)
C(32)-C(33)-C(34)-C(29)	-1.0(5)
C(30)-C(29)-C(34)-C(33)	0.6(5)
P(1)-C(29)-C(34)-C(33)	-178.0(3)
C(55)-P(2)-C(35)-C(40)	7.5(3)
C(61)-P(2)-C(35)-C(40)	116.7(2)
Ag(1)-P(2)-C(35)-C(40)	-118.4(2)

C(55)-P(2)-C(35)-C(36)	-174.6(2)
C(61)-P(2)-C(35)-C(36)	-65.3(2)
Ag(1)-P(2)-C(35)-C(36)	59.6(2)
C(40)-C(35)-C(36)-C(37)	-4.8(4)
P(2)-C(35)-C(36)-C(37)	177.2(2)
C(40)-C(35)-C(36)-C(41)	174.5(3)
P(2)-C(35)-C(36)-C(41)	-3.5(3)
C(35)-C(36)-C(37)-C(38)	3.3(4)
C(41)-C(36)-C(37)-C(38)	-176.0(3)
C(36)-C(37)-C(38)-C(39)	1.1(5)
C(37)-C(38)-C(39)-C(40)	-3.9(5)
C(36)-C(35)-C(40)-C(39)	2.0(4)
P(2)-C(35)-C(40)-C(39)	180.0(2)
C(38)-C(39)-C(40)-C(35)	2.4(5)
C(42)-N(3)-C(41)-C(36)	178.2(3)
C(37)-C(36)-C(41)-N(3)	2.6(4)
C(35)-C(36)-C(41)-N(3)	-176.7(3)
C(41)-N(3)-C(42)-C(43)	-118.4(3)
C(41)-N(3)-C(42)-C(44)	115.8(3)
C(48)-N(4)-C(43)-O(5)	-7.5(5)
C(48)-N(4)-C(43)-C(42)	171.1(3)
N(3)-C(42)-C(43)-O(5)	-67.3(4)
C(44)-C(42)-C(43)-O(5)	57.4(5)
N(3)-C(42)-C(43)-N(4)	114.1(3)
C(44)-C(42)-C(43)-N(4)	-121.2(3)
N(3)-C(42)-C(44)-C(45)	175.9(3)
C(43)-C(42)-C(44)-C(45)	53.4(4)
N(3)-C(42)-C(44)-C(46)	52.1(4)
C(43)-C(42)-C(44)-C(46)	-70.4(4)
N(3)-C(42)-C(44)-C(47)	-68.0(4)
C(43)-C(42)-C(44)-C(47)	169.5(3)
C(43)-N(4)-C(48)-C(49)	-141.3(3)
C(43)-N(4)-C(48)-C(53)	38.8(5)
C(53)-C(48)-C(49)-C(50)	-1.9(6)
N(4)-C(48)-C(49)-C(50)	178.2(3)
C(48)-C(49)-C(50)-C(51)	1.0(6)

C(54)-O(6)-C(51)-C(52)	-171.6(4)
C(54)-O(6)-C(51)-C(50)	9.0(6)
C(49)-C(50)-C(51)-O(6)	-179.5(4)
C(49)-C(50)-C(51)-C(52)	1.1(6)
O(6)-C(51)-C(52)-C(53)	178.1(4)
C(50)-C(51)-C(52)-C(53)	-2.4(6)
C(51)-C(52)-C(53)-C(48)	1.6(6)
C(49)-C(48)-C(53)-C(52)	0.6(5)
N(4)-C(48)-C(53)-C(52)	-179.5(3)
C(35)-P(2)-C(55)-C(56)	75.4(3)
C(61)-P(2)-C(55)-C(56)	-32.0(3)
Ag(1)-P(2)-C(55)-C(56)	-160.8(3)
C(35)-P(2)-C(55)-C(60)	-104.4(3)
C(61)-P(2)-C(55)-C(60)	148.1(3)
Ag(1)-P(2)-C(55)-C(60)	19.3(3)
C(60)-C(55)-C(56)-C(57)	0.0(5)
P(2)-C(55)-C(56)-C(57)	-179.8(3)
C(55)-C(56)-C(57)-C(58)	0.9(6)
C(56)-C(57)-C(58)-C(59)	-2.1(7)
C(57)-C(58)-C(59)-C(60)	2.4(7)
C(58)-C(59)-C(60)-C(55)	-1.4(7)
C(56)-C(55)-C(60)-C(59)	0.2(6)
P(2)-C(55)-C(60)-C(59)	-180.0(3)
C(55)-P(2)-C(61)-C(62)	83.8(3)
C(35)-P(2)-C(61)-C(62)	-24.9(3)
Ag(1)-P(2)-C(61)-C(62)	-147.5(2)
C(55)-P(2)-C(61)-C(66)	-97.4(2)
C(35)-P(2)-C(61)-C(66)	154.0(2)
Ag(1)-P(2)-C(61)-C(66)	31.3(3)
C(66)-C(61)-C(62)-C(63)	0.5(5)
P(2)-C(61)-C(62)-C(63)	179.3(3)
C(61)-C(62)-C(63)-C(64)	-0.2(6)
C(62)-C(63)-C(64)-C(65)	-0.3(6)
C(63)-C(64)-C(65)-C(66)	0.6(6)
C(62)-C(61)-C(66)-C(65)	-0.2(5)
P(2)-C(61)-C(66)-C(65)	-179.1(3)

C(64)-C(65)-C(66)-C(61)	-0.4(5)
C(3S)-O(1S)-C(2S)-C(1S)	-177.3(10)
C(2S)-O(1S)-C(3S)-C(4S)	175.0(12)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	-
N(2)-H(2)O(2)	0.88	2.14	2.958(3)	155.2	-
N(4)-H(4)O(1)	0.88	2.02	2.897(3)	173.4	

Table 7. Hydrogen bonds for bc106 [Å and °]

■ X-ray crystal structure of 17:

Table 1. Crystal data and structure refinement	ent for 17	
Identification code	d08002	
Empirical formula	C15 H17 N O5	
Formula weight	291.30	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 6.4323(2) Å	α= 90°.
	b = 9.5882(2) Å	β= 90°.
	c = 23.5349(6) Å	$\gamma = 90^{\circ}$.
Volume	1451.50(7) Å ³	
Z	4	
Density (calculated)	1.333 Mg/m ³	
Absorption coefficient	0.841 mm ⁻¹	
F(000)	616	
Crystal size	$0.45 \ x \ 0.15 \ x \ 0.15 \ mm^3$	
Theta range for data collection	3.76 to 67.56°.	

Index ranges Reflections collected Independent reflections Completeness to theta = 67.56° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole $-7 \le h \le 7, -11 \le k \le 10, -27 \le l \le 28$ 19525 2610 [R(int) = 0.0193] 99.9 % Semi-empirical from equivalents 0.8842 and 0.7033 Full-matrix least-squares on F² 2610 / 1 / 196 1.049 R1 = 0.0241, wR2 = 0.0628 R1 = 0.0242, wR2 = 0.0629 0.05(12) 0.169 and -0.161 e.Å⁻³

	Х	У	Z	U(eq)	
O(3)	4092(1)	-1303(1)	7898(1)	18(1)	
O(1)	2313(1)	2902(1)	8285(1)	20(1)	
O(5)	4054(1)	-901(1)	9116(1)	21(1)	
O(4)	7338(1)	-1421(1)	9365(1)	24(1)	
N(1)	5459(2)	1152(1)	8400(1)	17(1)	
O(2)	1862(1)	-3095(1)	7901(1)	26(1)	
C(12)	3621(2)	-2681(1)	7951(1)	19(1)	
C(7)	5166(2)	2147(1)	8830(1)	18(1)	
C(8)	6711(2)	-100(1)	8497(1)	16(1)	
C(13)	6112(2)	-874(1)	9050(1)	17(1)	
C(1)	382(2)	3648(1)	8255(1)	23(1)	
C(9)	6288(2)	-1105(1)	7992(1)	17(1)	
C(10)	7104(2)	-2554(1)	8083(1)	19(1)	
C(15)	9056(2)	195(1)	8480(1)	21(1)	
C(6)	6396(2)	2269(1)	9315(1)	21(1)	
C(11)	5545(2)	-3451(1)	8066(1)	20(1)	
C(5)	6074(2)	3336(1)	9707(1)	24(1)	
C(2)	3515(2)	3111(1)	8761(1)	18(1)	
C(4)	4491(2)	4286(1)	9626(1)	25(1)	
C(3)	3201(2)	4167(1)	9153(1)	22(1)	
C(14)	3306(2)	-1668(1)	9606(1)	29(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for d08002. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for d08002

O(3)-C(12)	1.3613(15)
O(3)-C(9)	1.4421(14)
O(1)-C(2)	1.3761(14)
O(1)-C(1)	1.4347(15)
O(5)-C(13)	1.3327(15)
O(5)-C(14)	1.4496(15)
O(4)-C(13)	1.2025(15)
N(1)-C(7)	1.4029(15)
N(1)-C(8)	1.4634(15)
N(1)-H(1)	0.870(13)
O(2)-C(12)	1.2053(15)
C(12)-C(11)	1.4664(17)
C(7)-C(6)	1.3939(17)
C(7)-C(2)	1.4172(17)
C(8)-C(15)	1.5356(16)
C(8)-C(13)	1.5479(15)
C(8)-C(9)	1.5535(15)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(9)-C(10)	1.5007(16)
C(9)-H(9)	1.0000
C(10)-C(11)	1.3212(18)
C(10)-H(10)	0.9500
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(6)-C(5)	1.3941(17)
C(6)-H(6)	0.9500
C(11)-H(11)	0.9500
C(5)-C(4)	1.3791(19)
C(5)-H(5)	0.9500
C(2)-C(3)	1.3842(17)
C(4)-C(3)	1.3946(19)
C(4)-H(4)	0.9500

C(3)-H(3)	0.9500
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(12)-O(3)-C(9)	109.37(9)
C(2)-O(1)-C(1)	116.94(9)
C(13)-O(5)-C(14)	115.63(10)
C(7)-N(1)-C(8)	121.29(9)
C(7)-N(1)-H(1)	110.5(10)
C(8)-N(1)-H(1)	114.7(10)
O(2)-C(12)-O(3)	121.34(11)
O(2)-C(12)-C(11)	130.13(12)
O(3)-C(12)-C(11)	108.53(10)
C(6)-C(7)-N(1)	124.84(11)
C(6)-C(7)-C(2)	117.67(10)
N(1)-C(7)-C(2)	117.48(10)
N(1)-C(8)-C(15)	112.67(10)
N(1)-C(8)-C(13)	112.80(9)
C(15)-C(8)-C(13)	110.77(10)
N(1)-C(8)-C(9)	107.08(9)
C(15)-C(8)-C(9)	105.44(9)
C(13)-C(8)-C(9)	107.60(9)
O(4)-C(13)-O(5)	124.80(11)
O(4)-C(13)-C(8)	124.38(11)
O(5)-C(13)-C(8)	110.77(10)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(3)-C(9)-C(10)	104.03(9)
O(3)-C(9)-C(8)	111.72(9)
C(10)-C(9)-C(8)	113.84(9)
O(3)-C(9)-H(9)	109.0

C(10)-C(9)-H(9)	109.0						
C(8)-C(9)-H(9)	109.0						
C(11)-C(10)-C(9)	109.46(11)						
C(11)-C(10)-H(10)	125.3						
C(9)-C(10)-H(10)	125.3						
C(8)-C(15)-H(15A)	109.5						
C(8)-C(15)-H(15B)	109.5						
H(15A)-C(15)-H(15B)	109.5						
C(8)-C(15)-H(15C)	109.5						
H(15A)-C(15)-H(15C)	109.5						
H(15B)-C(15)-H(15C)	109.5						
C(7)-C(6)-C(5)	121.35(12)						
C(7)-C(6)-H(6)	119.3						
C(5)-C(6)-H(6)	119.3						
C(10)-C(11)-C(12)	108.55(11)						
C(10)-C(11)-H(11)	125.7						
C(12)-C(11)-H(11)	125.7						
C(4)-C(5)-C(6)	120.16(12)						
C(4)-C(5)-H(5)	119.9						
C(6)-C(5)-H(5)	119.9						
O(1)-C(2)-C(3)	124.55(11)						
O(1)-C(2)-C(7)	114.80(10)						
C(3)-C(2)-C(7)	120.66(11)						
C(5)-C(4)-C(3)	119.73(11)						
C(5)-C(4)-H(4)	120.1						
C(3)-C(4)-H(4)	120.1						
C(2)-C(3)-C(4)	120.38(11)						
C(2)-C(3)-H(3)	119.8						
C(4)-C(3)-H(3)	119.8						
O(5)-C(14)-H(14A)	109.5						
O(5)-C(14)-H(14B)	109.5						
H(14A)-C(14)-H(14B)	109.5						
O(5)-C(14)-H(14C)	109.5						
H(14A)-C(14)-H(14C)	109.5						
H(14B)-C(14)-H(14C)	109.5						
	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
-------	----------	-----------------	-----------------	-----------------	-----------------	-----------------	--
O(3)	16(1)	18(1)	19(1)	-1(1)	-2(1)	2(1)	
O(1)	20(1)	20(1)	21(1)	0(1)	0(1)	3(1)	
O(5)	22(1)	22(1)	20(1)	6(1)	4(1)	0(1)	
O(4)	29(1)	21(1)	21(1)	2(1)	-5(1)	2(1)	
N(1)	19(1)	16(1)	17(1)	0(1)	-1(1)	0(1)	
O(2)	17(1)	27(1)	33(1)	-2(1)	0(1)	-3(1)	
C(12)	20(1)	19(1)	17(1)	-2(1)	2(1)	0(1)	
C(7)	21(1)	13(1)	18(1)	2(1)	5(1)	-2(1)	
C(8)	18(1)	14(1)	17(1)	0(1)	1(1)	0(1)	
C(13)	22(1)	13(1)	16(1)	-3(1)	-1(1)	0(1)	
C(1)	21(1)	20(1)	30(1)	3(1)	2(1)	3(1)	
C(9)	15(1)	18(1)	17(1)	-1(1)	2(1)	-1(1)	
C(10)	17(1)	20(1)	19(1)	-3(1)	1(1)	3(1)	
C(15)	19(1)	20(1)	24(1)	-2(1)	1(1)	-2(1)	
C(6)	24(1)	17(1)	21(1)	2(1)	2(1)	0(1)	
C(11)	21(1)	18(1)	21(1)	-2(1)	0(1)	2(1)	
C(5)	31(1)	21(1)	19(1)	0(1)	0(1)	-5(1)	
C(2)	20(1)	17(1)	18(1)	3(1)	4(1)	-3(1)	
C(4)	35(1)	18(1)	21(1)	-4(1)	6(1)	-2(1)	
C(3)	26(1)	16(1)	24(1)	2(1)	7(1)	2(1)	
C(14)	35(1)	27(1)	24(1)	7(1)	9(1)	0(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for d08002. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)	
H(1)	4300(20)	1010(15)	8216(6)	20	
H(1A)	661	4648	8217	35	
H(1B)	-419	3480	8603	35	
H(1C)	-416	3324	7926	35	
H(9)	6928	-709	7640	20	
H(10)	8520	-2790	8144	22	
H(15A)	9426	830	8790	31	
H(15B)	9418	626	8115	31	
H(15C)	9822	-682	8523	31	
H(6)	7475	1611	9379	25	
H(11)	5653	-4431	8119	24	
H(5)	6948	3410	10032	28	
H(4)	4281	5018	9892	30	
H(3)	2100	4813	9099	27	
H(14A)	3770	-1203	9955	43	
H(14B)	3857	-2620	9596	43	
H(14C)	1783	-1699	9599	43	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d08002.

_

C(9)-O(3)-C(12)-O(2)	178.67(11)
C(9)-O(3)-C(12)-C(11)	-1.85(12)
C(8)-N(1)-C(7)-C(6)	17.83(17)
C(8)-N(1)-C(7)-C(2)	-163.14(10)
C(7)-N(1)-C(8)-C(15)	-77.21(13)
C(7)-N(1)-C(8)-C(13)	49.13(14)
C(7)-N(1)-C(8)-C(9)	167.31(10)
C(14)-O(5)-C(13)-O(4)	-0.54(17)
C(14)-O(5)-C(13)-C(8)	176.79(9)
N(1)-C(8)-C(13)-O(4)	-141.54(11)
C(15)-C(8)-C(13)-O(4)	-14.19(16)
C(9)-C(8)-C(13)-O(4)	100.58(13)
N(1)-C(8)-C(13)-O(5)	41.11(13)
C(15)-C(8)-C(13)-O(5)	168.46(9)
C(9)-C(8)-C(13)-O(5)	-76.77(11)
C(12)-O(3)-C(9)-C(10)	2.47(11)
C(12)-O(3)-C(9)-C(8)	-120.75(10)
N(1)-C(8)-C(9)-O(3)	-50.61(12)
C(15)-C(8)-C(9)-O(3)	-170.82(9)
C(13)-C(8)-C(9)-O(3)	70.91(12)
N(1)-C(8)-C(9)-C(10)	-168.07(9)
C(15)-C(8)-C(9)-C(10)	71.71(12)
C(13)-C(8)-C(9)-C(10)	-46.56(12)
O(3)-C(9)-C(10)-C(11)	-2.26(12)
C(8)-C(9)-C(10)-C(11)	119.57(11)
N(1)-C(7)-C(6)-C(5)	176.36(11)
C(2)-C(7)-C(6)-C(5)	-2.67(17)
C(9)-C(10)-C(11)-C(12)	1.21(13)
O(2)-C(12)-C(11)-C(10)	179.79(13)
O(3)-C(12)-C(11)-C(10)	0.37(13)
C(7)-C(6)-C(5)-C(4)	1.18(19)
C(1)-O(1)-C(2)-C(3)	-12.97(16)
C(1)-O(1)-C(2)-C(7)	167.18(10)
C(6)-C(7)-C(2)-O(1)	-177.66(10)

Table 6. Torsion angles [°] for d08002.

N(1)-C(7)-C(2)-O(1)	3.24(15)
C(6)-C(7)-C(2)-C(3)	2.49(17)
N(1)-C(7)-C(2)-C(3)	-176.61(10)
C(6)-C(5)-C(4)-C(3)	0.58(19)
O(1)-C(2)-C(3)-C(4)	179.33(11)
C(7)-C(2)-C(3)-C(4)	-0.83(18)
C(5)-C(4)-C(3)-C(2)	-0.74(18)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(3)	0.870(13)	2.344(15)	2.7764(13)	110.9(11)

Table 7. Hydrogen bonds for d08002 [Å and °].

Symmetry transformations used to generate equivalent atoms: