Ag-Catalyzed Diastereo- and Enantioselective Vinylogous Mannich Reactions of α–Ketoimine Esters. Development of a Method and Investigation of its Mechanism

Laura C. Wieland, Erika Vieira, Marc L. Snapper*, and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION, PART 2

Table of Contents	Page
NMR data for ketoimines 4a-4l, 15	S2
NMR data for ketoimines for Mannich products 7 a-7h, 7j-7k, 8i-8j, 17-18	S28
NMR data for unprotected amine product 9 and reduction products 10a, 10	S58
NMR data for AgOAc-1 complexes	S64
NMR data for phosphine ligand 16	S75

1

Wieland, et al., Supporting Information, Part 2, Page S25

.

ррт

.

Ŧ

MeO.

NH2

Powder form of AgOAc-1 complex

Powder form of AgOAc-1 complex

400 MHz ¹H NMR spectra of powder form of AgOAc-1 complex in d_8 -THF at various temperatures

400 MHz ¹H NMR spectra of **12** in d_8 -THF at various temperatures

400 MHz ¹H NMR spectra of AgOAc-**1** complexes in d_8 -THF at -78 °C

120 the 100 to 80 to 60 to 60

40

20

ppm