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Parameter tunability: digital vs. analog simulations 

 Traditional software-based computer models are powerful because of the ease with which 

one can adjust simulation parameters.  This advantage pales as model complexity or the required 

simulation time increases. When using software-based simulations, practical considerations place 

constraints on:  1) the order and type of the differential equations used to describe dynamic 

biological processes; 2) the number of such equations to be included in the model; 3) the 

stiffness and robustness of the model equations; and 4) the precision, stability and speed of the 

simulation software and numerical routines. These issues must be judiciously optimized even 

when using state-of-the-art computers.  The present iono-neuronal models are highly demanding 

in that they require both high sampling rates to capture physiological behaviors of ion-channel 

dynamics and long run times to capture the development of chaotic dynamics.  Each 40 second 

run (in biological time) required >10 min in real time for a NEURON simulation and >30 minute 

on the MATLAB simulation package (The Mathworks, Natick, MA).   

 Moreover, software simulations must allow the system to relax to “dynamical steady 

state” before getting useful data for each run, rendering the initial simulation time unusable.  

This cost is paid each time a parameter is changed.  This run-stop-restart methodology consumes 

valuable computational time, causing vast regions of the parameter space to remain unexplored, 

and important behaviors to be overlooked.   

Hardware-based models, on the other hand, compute in real time at high speed independent of 

model complexity.  This is a tremendous advantage that allows rapid parameter space 
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exploration of even highly complex models. Importantly, the tuning of parameters on-chip does 

not require the simulation to be aborted and restarted. Instead, the effects of tuning are revealed 

instantaneously such that a large parameter space may be explored in an interactive fashion. By 

contrast, the high-precision, low-noise advantages of digital computation are less important 

insofar as iono-neuronal dynamics are intrinsically analog and noisy. The use of hardware-based 

analog models with limited precision but real-time computation is therefore prudent for large-

scale iono-neuronal simulations.  

Pacemaker bursting mechanisms explored by parameter tuning 

 The on-chip pacemaker model allowed us to generate a variety of bursting behaviors by 

systematically tuning all model parameters in real time.  Each portion of the burst generation 

mechanism was modified independently, and the effects on burst duration, frequency, interburst 

intervals (IBI) and interspike intervals (ISI) were readily quantified. 

 Table S1 lists the tunable parameters of the bursting model.  The Ix- REST parameters are 

DC bias current required for proper operation of the log-domain filter (tunable picoampere-

nanoampere levels).  An important use of the bias current is to provide the persistent 

depolarizing current of the persistent Na (NaP) channel.  In other channels, they act as leak 

current paths that can be nulled by tuning the AP circuit’s ILEAK  node as desired.  The τx node 

represents the activation and inactivation dynamics of ionic channels.  Thus, tuning the Iτ node of 

a log-domain filter can be thought of as affecting the channel’s opening and closing kinetics.  

Finally, we can modify each channel’s reversal potential and investigate the effects of changing 

neuronal excitability.   

 Figure S1 shows the effects of modifying INaP at rest, τNaP, and ENa on burst duration and 

burst frequency.  Importantly, we found that slower activation dynamics results in longer bursts 

that exhibit higher irregularity, along with longer interburst intervals.  This parameter space was 

analyzed by tuning the excitability for each ion channel and changing the activation/inactivation 

kinetics for each portion of burst mechanism.  Here are some qualitative observations:  

1. For a given set of NaP parameters, tuning τKCa dynamics allowed the neuron to transition 

from silence through bursting (with 2-200 spikes/burst) to tonic firing.   

2. For a given set of calcium-activated K channels (KCa) parameters, tuning INaP-rest allows 

modification of IBI (from 300 ms to >10 seconds).  Tuning τNaP allows us to increase 

burst length independent of bursting frequency.  Moreover, tonic firing frequency was 
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dependent on both parameters, allowing us to generate firing rates from 1 – 80 Hz, as 

desired.   

3. Modification of calcium dynamics by tuning τCa allowed bursts length from 2-20 

spikes/burst. Very slow calcium channel kinetics produced slow calcium summation that 

together with slow KCa dynamics produced regular bursts and long IBI (>3 sec).    

4. We were able to recreate a variety of bursting behaviors.  By modifying the slow kinetics 

of calcium channels, we were able to see an incrementing ISI pattern, and an 

incrementing-decrementing ISI pattern (Fig S2).   
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Table S1: Tunable Bursting Parameters 

AP Mechanism Excitatory connections Slow mediator Inhibitory connections 
ILEAK INaP-REST ICa-REST IKCa-REST 

 τNaP τCa τKCa 
 ENa ECa EK 
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Fig S1.. Modification of burst length and burst frequency as a function of various Na-P 
parameters.  a. Response to changes in the resting INa-P levels.  Top: spike per burst stayed 
relatively constant with increasing depolarization current; bottom: bursting frequency increases 
exponentially with increased depolarization current..  b . Response to changing the 
persistent Na channel.activation dynamics.  Top: slower dynamics produced exponentially more 
spikes per burst.  Bottom: faster dynamics linearly increased burst frequency.  Blue circle 
indicates parameter space that showed chaotic dynamics.  c.  Response to changes in excitability 
(by modification of the Na-P channel reversal potential EREV).  Top: spikes per burst increased in 
response to larger electrochemical gradient.  Bottom: spiking frequency linearly increased with 
changes in reversal potential. 
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Fig S2.  Modeling a variety of bursting patterns.  Each burst in one run was overlaid on top of each  
other (each burst is color-code). a) Incrementing ISI pattern.  b) Incrementing - decrementing ISI 
pattern. 
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