### **Supplementary Figure, Tables and Materials & Methods**

### Two-Polymerase Mechanisms Dictate Error-Free and Error-Prone Translesion DNA Synthesis in Mammals

Sigal Shachar<sup>1</sup>, Omer Ziv<sup>1</sup>, Sharon Avkin<sup>1</sup>, Sheera Adar<sup>1</sup>, John Wittschieben<sup>2</sup>, Thomas Reißner<sup>3</sup>, Stephen Chaney<sup>4</sup>, Errol C Friedberg<sup>5</sup>, Zhigang Wang<sup>6</sup>, Thomas Carell<sup>3</sup>,

Nicholas Geacintov<sup>7</sup>, and Zvi Livneh<sup>1\*</sup>

<sup>1</sup>Department of Biological Chemistry, Weizmann Institute of Science,

Rehovot 76100, Israel

<sup>2</sup>Department of Pharmacology, University of Pittsburgh Medical School and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15212-1863, USA

<sup>3</sup>Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, 81377 München, Germany.

<sup>4</sup>Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA

<sup>5</sup>Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9072, USA

<sup>6</sup>Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA

<sup>7</sup>Chemistry Department, New York University, New York, NY 1003-5180, USA



**Figure 1s. Outline of the quantitative assay for TLS in cultured mammalian cells.** Mammalian cells are transfected with a gap-lesion plasmid (kan<sup>R</sup>) containing a site-specific lesion (indicated as a

black star), along with a gapped plasmid (cm<sup>R</sup>) without a lesion, and a carrier plasmid (amp<sup>R</sup>; pUC18). Following an incubation period the plasmids are extracted, and used to transform *E. coli* cells, which are then plated in parallel on kan-LB and cm-LB plates. The ratio of kan<sup>R</sup>/cm<sup>R</sup> transformants represents the extent of gap repair, which is mostly via TLS. Individual colonies are picked, and their plasmid contents analyzed for mutations in the DNA region corresponding to the original site of the gap. To obtain values of TLS from values of gap repair, the latter were multiplied by the percentage of TLS events out of the total events, as determined by the DNA sequence analysis.

| TLS period | Transfo | ormants         | Plasmid | TLS    |
|------------|---------|-----------------|---------|--------|
| (h)        |         |                 | repair  |        |
|            | KanR    | Cm <sup>R</sup> |         |        |
| 0.5        | 42      | 290             | 16±1%   | 16±1%  |
| 1          | 181     | 510             | 38±1%   | 37±1%  |
| 1.5        | 237     | 465             | 52±5%   | 50±4%  |
| 2          | 91      | 133             | 57±2%   | 53±2%  |
| 4          | 101     | 127             | 72±6%   | 67±5%  |
| 6          | 77      | 93              | 80±15%  | 74±14% |
| 8          | 319     | 296             | 93±4%   | 86±4%  |
| 10         | 237     | 242             | 93±8%   | 86±7%  |
| 24         | 476     | 432             | 93±2%   | 86±2%  |

Table 1s. TLS across TT CPD in human U2OS cells

The plasmid mixtures containing GP-TT-CPD  $(kan^R)$  along with the control GP20  $(cm^R)$  and the carrier plasmids were introduced into U2OS cells by electroporation. Following incubation of 0-24h to allow TLS, the DNA was extracted and used to transform an *E. coli* indicator strain. Plasmid survival levels were calculated by the ratio of kan<sup>R</sup>/cm<sup>R</sup> colonies. TLS levels were calculated by reducing the relative ratio of non-TLS events (large insertions and deletions) from the corresponding plasmid survival values. Each point represents the average TLS level of four experiments.

| TLS period<br>(h) | Transformants |     | Plasmid<br>repair | TLS   |
|-------------------|---------------|-----|-------------------|-------|
|                   | KanR          | CmR |                   |       |
| 2                 | 85            | 860 | 9±2%              | 9±2%  |
| 4                 | 231           | 536 | 43±6%             | 42±6% |
| 6                 | 476           | 955 | 49±7%             | 48±6% |
| 8                 | 459           | 805 | 55±4%             | 55±4% |
| 10                | 507           | 773 | 61±6%             | 60±6% |
| 24                | 555           | 768 | 63±7%             | 63±7% |

Table 2s. TLS across BP-G in human U2OS cells

The experiment was performed as described in the legend to Table 1s, except that the gap-lesion plasmid was GP-BP-G (kan<sup>R</sup>).

| TLS period | Transfo          | ormants         | Plasmid | TLS    |
|------------|------------------|-----------------|---------|--------|
| (h)        |                  |                 | repair  |        |
|            | Kan <sup>R</sup> | Cm <sup>R</sup> |         |        |
| 1          | 8                | 160             | 4±0.5%  | 4±0.5% |
| 2          | 46               | 281             | 12±1%   | 12±1%  |
| 4          | 176              | 337             | 42±4%   | 41±4%  |
| 6          | 188              | 306             | 48±5%   | 47±5%  |
| 8          | 121              | 183             | 51±4%   | 50±4%  |
| 10         | 250              | 329             | 57±3%   | 56±3%  |
| 24         | 293              | 330             | 68±4%   | 67±4%  |

### Table 3s. TLS across CisPt-GG in human U2OS cells

The experiment was performed as described in the legend to Table 1s, except that the gap-lesion plasmid was GP-CisPt-GG (kan<sup>R</sup>).

| TLS period<br>(h) | Transfo          | ormants | Plasmid<br>repair | TLS   |
|-------------------|------------------|---------|-------------------|-------|
|                   | Kan <sup>R</sup> | CmR     |                   |       |
| 1                 | 11               | 227     | 1±1%              | 1±1%  |
| 2                 | 44               | 503     | 6±4%              | 6±4%  |
| 4                 | 144              | 845     | 13±2%             | 11±2% |
| 6                 | 231              | 1025    | 18±3%             | 16±3% |
| 8                 | 112              | 470     | 19±2%             | 18±1% |
| 10                | 160              | 641     | 19±2%             | 17±2% |
| 24                | 151              | 453     | 29±6%             | 27±5% |

Table 4s. TLS across TT 6-4 PP in human U2OS cells

The experiment was performed as described in the legend to Table 1s, except that the gap-lesion plasmid was GP- 6-4 PP (kan<sup>R</sup>).

| TLS period<br>(h) | Transfo          | ormants | Plasmid<br>repair | TLS   |
|-------------------|------------------|---------|-------------------|-------|
|                   | Kan <sup>R</sup> | CmR     |                   |       |
| 2                 | 67               | 462     | 8±3%              | 7±2%  |
| 4                 | 63               | 341     | 14±2%             | 11±1% |
| 6                 | 103              | 449     | 18±3%             | 14±3% |
| 8                 | 145              | 572     | 20±1%             | 16±1% |
| 10                | 137              | 450     | 23±4%             | 19±3% |
| 24                | 141              | 432     | 30±2%             | 24±1% |

Table 5s. TLS across an abasic (AP) site in human U2OS cells

The experiment was performed as described in the legend to Table 1s, except that the gap-lesion plasmid contained an AP site  $(kan^{R})$ .

### Table 6s. TLS across 4-OHEN-C in human U2OS cells

| TLS period | Transfo | ormants | Plasmid | TLS    |
|------------|---------|---------|---------|--------|
| (h)        |         |         | repair  |        |
|            | KanR    | CmR     |         |        |
| 2          | 11      | 123     | 5±2%    | 3±1%   |
| 4          | 31      | 147     | 15±0.5% | 9±0.5% |
| 24         | 50      | 157     | 24±5%   | 14±3%  |

The experiment was performed as described in the legend to Table 1s, except that the gap-lesion plasmid was GP-4-OHEN-C (kan<sup>R</sup>).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| C- <u>A-A</u> -C                    | 39 (84.8%)         |
| G- <u>A-A</u> -C                    | 1 (2.2%)           |
| <u>A-A</u> -C                       | 1 (2.2%)           |
| C- <u>T-A</u> -C                    | 2(4.3%)            |
| Deletion/insertion                  | 3 (6.5%)           |
| Total clones analyzed               | 46 (100%)          |
| Mutagenic TLS, %                    | 9.3%               |

Table 7s. Analysis of mutations formed during TLS across a TT CPD in U2OS cells

The experiment was performed as described in the legend to Table 1s using a plasmid mixture containing GP-TT CPD (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-TT CPD descendants and subjected to DNA sequence analysis. The two bases opposite the dimer are underlined. Mutagenic TLS was calculated as the percentage of non-AA sequences inserted opposite the TT CPD out of all TLS events (which do not include large insertions or deletions).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| G- <u>C</u> -A                      | 91 (86.7%)         |
| G- <u>A</u> -A                      | 6 (5.7%)           |
| G- <u>G</u> -A                      | 3 (2.9%)           |
| G- <u>T</u> -A                      | 4 (3.8%)           |
| Deletion/insertion                  | 1 (1%)             |
| Total clones analyzed               | 105 (100%)         |
| Mutagenic TLS, %                    | 12.5%              |

Table 8s. Analysis of mutations formed during TLS across a BP-G in U2OS cells

The experiment was performed as described in the legend to Table 1s using a plasmid mixture containing GP-BP-G (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-BP-G descendants and subjected to DNA sequence analysis. The base opposite the lesion is underlined. Mutagenic TLS was calculated as the percentage of non-C sequences inserted opposite the BP-G out of all TLS events (which do not include large insertions or deletions).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| G- <u>C-C</u> -T                    | 77 (86.5%)         |
| G- <u>A-C</u> -T                    | 7 (7.9%)           |
| G- <u>T-C</u> -T                    | 2 (2.2%)           |
| G- <u>C-A</u> -T                    | 1 (1.1%)           |
| Deletion/insertion                  | 2 (2.2%)           |
| Total clones analyzed               | 89 (100%)          |
| Mutagenic TLS, %                    | 11.5%              |

#### Table 9s. Analysis of mutations formed during TLS across a cisPt-GG in U2OS cells

The experiment was performed as described in the legend to Table 1s using a plasmid mixture containing GP-cisPt-GG (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-cisPt-GG descendants and subjected to DNA sequence analysis. The two bases opposite the lesion are underlined. Mutagenic TLS was calculated as the percentage of non-CC sequences inserted opposite the cisPt-GG out of all TLS events (which do not include large insertions or deletions).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| C- <u>A-A</u> -C                    | 28 (23.3%)         |
| A- <u>A-A</u> -C                    | 1 (0.8%)           |
| G- <u>A-A</u> -C                    | 1 (0.8%)           |
| T- <u>C-A</u> -C                    | 1 (0.8%)           |
| C- <u>G-A</u> -C                    | 6 (5%)             |
| C- <u>G-G</u> -C                    | 1 (0.8%)           |
| C- <u>G-A</u> -A                    | 5 (4.2%)           |
| C- <u>T-A</u> -C                    | 3 (2.5%)           |
| C- <u>T-A</u> -A                    | 6 (5%)             |
| C- <u>-A</u> -C                     | 1 (0.8%)           |
| C- <u>A-C</u> -C                    | 2 (1.7%)           |
| C- <u>A-G</u> -C                    | 2 (1.7%)           |
| C- <u>A-T</u> -C                    | 3 (2.5%)           |
| C- <u>A-T</u> -G                    | 1 (0.8%)           |
| C- <u>A-T</u> -T                    | 1 (0.8%)           |
| C- <u>A-</u> -C                     | 3 (2.5%)           |
| C- <u>A-A</u> -A                    | 44 (36.7%)         |
| Deletion/insertion                  | 11 (9.2%)          |
| Total clones analyzed               | 120 (100%)         |
| Mutagenic TLS, %                    | 74.3%              |

Table 10s. Analysis of mutations formed during TLS across a TT 6-4 PP in U2OS cells

The experiment was performed as described in the legend to Table 1s using a plasmid mixture containing GP-6-4 PP (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-6-4 PP descendants and subjected to DNA sequence analysis. The two bases opposite the dimer are underlined. Mutagenic TLS was calculated as the percentage of non-AA sequences inserted opposite the TT 6-4 PP out of all TLS events (which do not include large insertions or deletions).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| C- <u>G</u> -C                      | 16 (14.7%)         |
| C- <u>A</u> -C                      | 19 (17.4%)         |
| C- <u>C</u> -C                      | 12 (11%)           |
| C- <u>T</u> -C                      | 2 (1.8%)           |
| CC                                  | 10 (9.2%)          |
| C                                   | 6 (5.5%)           |
| Deletion/insertion                  | 44 (40.4%)         |
| Total clones analyzed               | 109 (100%)         |
| Mutagenic TLS, %                    | 75.4%              |

Table 11s. Analysis of mutations formed during TLS across a 4-OHEN-C in U2OS cells

The experiment was performed as described in the legend to table 1s using a plasmid mixture containing GP-4-OHEN-C (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-4-OHEN-C descendants and subjected to DNA sequence analysis. The base opposite the lesion is underlined. Mutagenic TLS was calculated as the percentage of non-G sequences inserted opposite the 4-OHEN-C out of all TLS events (which do not include large insertions or deletions).

| Nucleotide inserted opposite lesion | Number of isolates |
|-------------------------------------|--------------------|
| C- <u>A</u> -C                      | 73 (50.7%)         |
| C- <u>C</u> -C                      | 20 (13.9%)         |
| C- <u>G</u> -C                      | 3 (2.1%)           |
| C- <u>T</u> -C                      | 14 (9.7%)          |
| CC                                  | 6 (4.2%)           |
| Deletion/insertion                  | 28 (19.4%)         |
| Total clones analyzed               | 144 (100%)         |

Table 12s. Analysis of mutations formed during TLS across an AP site in U2OS cells

The experiment was performed as described in the legend to Table 1s using a plasmid mixture containing a gap-pleasmid with an AP site (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing and subjected to DNA sequence analysis. The base opposite the lesion is underlined.

| Cell line                   | Gap-lesion plasmid | Transformants    |      | TLS, %     |
|-----------------------------|--------------------|------------------|------|------------|
|                             |                    | Kan <sup>R</sup> | CmR  |            |
| <i>Rev3L</i> <sup>+/+</sup> | AP site            | 205              | 460  | 46.1±3.5%  |
| <i>Rev3L</i> <sup>-/-</sup> | AP site            | 98               | 506  | 22.6±2.8%  |
| <i>Rev3L</i> <sup>+/+</sup> | BP-G               | 59               | 194  | 27.6±6.8%  |
| <i>Rev3L</i> -/-            | BP-G               | 59               | 1260 | 3.8±0.7%   |
| <i>Rev3L</i> <sup>+/+</sup> | cisPt-GG           | 41               | 193  | 21.3±5.8%  |
| <i>Rev3L</i> -/-            | cisPt-GG           | 83               | 1228 | 6.1±2.5%   |
| <i>Rev3L</i> <sup>+/+</sup> | M12                | 23               | 270  | 3.9±1.2%   |
| <i>Rev3L</i> -/-            | M12                | 28               | 393  | 0.5±0.1%   |
| <i>Rev3L</i> <sup>+/+</sup> | 4-OHEN-C           | 99               | 314  | 33.1±7.1%  |
| <i>Rev3L</i> -/-            | 4-OHEN-C           | 103              | 832  | 11.9±2.9%  |
| <i>Rev3L</i> <sup>+/+</sup> | TT CPD             | 285              | 456  | 74.7±15.5% |
| <i>Rev3L</i> -/-            | TT CPD             | 521              | 670  | 75.5±13.2% |
| <i>Rev3L</i> <sup>+/+</sup> | TT 6-4 PP          | 72               | 108  | 58.2±4.1%  |
| <i>Rev3L</i> -/-            | TT 6-4 PP          | 53               | 265  | 10.9±3.6%  |

**Table 13s**. Extent of TLS across various lesions in  $Rev3L^{+/+}$  and  $Rev3L^{-/-}$  MEFs

The cells were transfected with plasmid mixtures containing the indicated gap-lesion plasmid (kan<sup>R</sup>) along with the control GP20 (cm<sup>R</sup>). Following incubation of 24h to allow TLS, the DNA was extracted and used to transform an *E. coli* indicator strain. TLS extents were determined as described in the legend to Table 1s.

| MEF genotype:         | <i>Rev3L</i> <sup>+/+</sup> | Rev3L <sup>-/-</sup>  |  |
|-----------------------|-----------------------------|-----------------------|--|
| Nucleotide inserted   | Number of isolates          |                       |  |
| opposite lesion       |                             |                       |  |
| С                     | 33 (62.3%)                  | 34 (94.4%)            |  |
| А                     | 11 (20.7%)                  | 2 (5.6%)              |  |
| G                     | 2 (3.8%)                    | -                     |  |
| Т                     | 7 (13.2%)                   | -                     |  |
| Deletion/insertion    | 1 (1.8%)                    | 13 (26.5%)            |  |
| Total clones analyzed | 54 (100%)                   | 49 (100%)             |  |
| Mutagenic TLS, %      | 37.7%                       | 5.6%                  |  |
|                       |                             | P=0.0006 <sup>1</sup> |  |

Table 14s. Analysis of mutations formed during TLS through a BP-G adduct in  $Rev3L^{+/+}$  and  $Rev3L^{-/-}$  MEFs

The experiment was performed as described in the legend to Table 13s using a plasmid mixture containing GP-BP-G (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-BP-G descendants and subjected to DNA sequence analysis. Mutagenic TLS was calculated as the percentage of non-C sequences inserted opposite the BP-G out of all TLS events (which do not include insertions or deletions).

| MEF genotype:         | <i>Rev3L</i> <sup>+/+</sup> | <i>Rev3L</i> <sup>-/-</sup> |  |  |
|-----------------------|-----------------------------|-----------------------------|--|--|
| Nucleotides inserted  | Number of isolates          |                             |  |  |
| opposite lesion       |                             |                             |  |  |
| CC                    | 47 (87%)                    | 54 (100%)                   |  |  |
| СТ                    | -                           | -                           |  |  |
| AA                    | 2 (3.7%)                    | -                           |  |  |
| AC                    | -                           | -                           |  |  |
| СА                    | 3 (5.5%)                    | -                           |  |  |
| AG                    | 2 (3.7%)                    | -                           |  |  |
| Deletion/insertion    | 6 (10%)                     | 4 (7%)                      |  |  |
| Total clones analyzed | 60 (100%)                   | 58 (100%)                   |  |  |
| Mutagenic TLS, %      | 13%                         | ≤1.8%                       |  |  |
|                       |                             | $P = 0.0062^{1}$            |  |  |

## Table 15s. Analysis of mutations formed during TLS across a cisPt-GG adduct in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to table 13s using a plasmid mixture containing GP-cisPt-GG (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-cisPt-GG descendants and subjected to DNA sequence analysis. Mutagenic TLS was calculated as the percentage of non-CC sequences inserted opposite the cisPt-GG out of all TLS events (which do not include insertions or deletions).

| MEF genotype:                | <i>Rev3L</i> <sup>+/+</sup> | Rev3L <sup>-/-</sup> |  |  |
|------------------------------|-----------------------------|----------------------|--|--|
| Nucleotide inserted opposite | Number of isolates (%)      |                      |  |  |
| lesion                       |                             |                      |  |  |
| G                            | 6 (24%)                     | 18 (78.3%)           |  |  |
| А                            | 17 (68%)                    | 3 (13%)              |  |  |
| Т                            | 2 (8%)                      | 2 (8.7%)             |  |  |
| Total mutants analyzed:      | 25 (100%)                   | 23 (100%)            |  |  |
| Mutants, %                   | 76%                         | 21.7%                |  |  |
|                              |                             | <i>P</i> =0.0002     |  |  |

## Table 16s. Analysis of mutations formed during TLS across a 4-OHEN-C adduct in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to table 13s using a plasmid mixture containing GP-4-OHEN-C (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-4-OHEN-C descendants and subjected to DNA sequence analysis. Mutagenic TLS was calculated as the percentage of non-G sequences inserted opposite the 4-OHEN-C out of all TLS events (which do not include insertions or deletions).

| MEF genotype:                | <i>Rev3L</i> <sup>+/+</sup> | <i>Rev3L</i> <sup>-/-</sup> |
|------------------------------|-----------------------------|-----------------------------|
| Nucleotide inserted opposite | Number of isolate           | es (%)                      |
| lesion                       |                             |                             |
| АА                           | 16 (40%)                    | 32 (84%)                    |
| AAA                          | 11 (27.5%)                  | -                           |
| GAA                          | 2 (5%)                      | -                           |
| TAA                          | 2 (5%)                      | -                           |
| AG                           | 1 (2.5%)                    | -                           |
| AT                           | 4 (10%)                     | -                           |
| AC                           | 1 (2.5%)                    | 1 (2.6%)                    |
| GA                           | 1 (2.5%)                    | -                           |
| TT                           | 1 (2.5%)                    | -                           |
| Deletion/insertion           | 1 (2.5%)                    | 5 (13.4%)                   |
| Total mutants analyzed:      | 40 (100%)                   | 38 (100%)                   |
| Mutagenic TLS, %             | 59%                         | 3%                          |
|                              |                             | <i>P</i> <0.0001            |

## Table 17s. Analysis of mutations formed during TLS across a TT 6-4 PP adduct in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to Table 13s using a plasmid mixture containing GP-6-4 PP (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-6-4 PP descendants and subjected to DNA sequence analysis. Mutagenic TLS was calculated as the percentage of non-AA sequences inserted opposite the TT 6-4 PP out of all TLS events (which do not include insertions or deletions).

| MEF genotype:                | <i>Rev3L</i> <sup>+/+</sup> | Rev3L <sup>-/-</sup> |
|------------------------------|-----------------------------|----------------------|
| Nucleotide inserted opposite | Number of isolate           | es (%)               |
| lesion                       |                             |                      |
| AA                           | 27 (100%)                   | 27 (100%)            |
| Total mutants analyzed:      | 27 (100%)                   | 27 (100%)            |
| Mutagenic TLS, %             | <3.7%                       | <3.7%                |

### Table 18s. Analysis of mutations formed during TLS across a TT CPD adduct in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to Table 13s using a plasmid mixture containing GP-TT-CPD (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-TT CPD descendants and subjected to DNA sequence analysis. Mutagenic TLS was calculated as the percentage of non-AA sequences inserted opposite the TT CPD (none in this case) out of all TLS events.

| MEF genotype:         | <i>Rev3L</i> <sup>+/+</sup> | <i>Rev3L</i> <sup>-/-</sup> |  |  |
|-----------------------|-----------------------------|-----------------------------|--|--|
| Nucleotide inserted   | Number of isolates          |                             |  |  |
| opposite lesion       |                             |                             |  |  |
| А                     | 22 (67%)                    | 22 (73%)                    |  |  |
| G                     | -                           | 2 (7%)                      |  |  |
| Т                     | 4 (12%)                     | -                           |  |  |
| С                     | 2 (6%)                      | -                           |  |  |
| -1 deletion           | 5 (15%)                     | 6 (20%)                     |  |  |
| Total clones analyzed | 33 (100%)                   | 30 (100%)                   |  |  |

# Table 19s. Analysis of mutations formed during TLS across an AP site adduct in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to Table 13s using a plasmid mixture containing a gapped plasmid with an AP site (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies and subjected to DNA sequence analysis.

| MEF genotype            | <i>Rev3L</i> <sup>+/+</sup> | <i>Rev3L</i> <sup>-/-</sup> |
|-------------------------|-----------------------------|-----------------------------|
| Mutation type           | Number of isolate           | s (%)                       |
| А                       | 1 (3%)                      | -                           |
| С                       | 1 (3%)                      | -                           |
| Т                       | 1 (3%)                      | -                           |
| AT                      | 3 (9.5%)                    | 1 (4%)                      |
| AAT                     | 1 (3%)                      | -                           |
| TTT                     | 1 (3%)                      | -                           |
| ATT                     | 4 (12.5%)                   | -                           |
| GA                      | 1 (3%)                      | -                           |
| Complex events          | 7 (22%)                     | -                           |
| -1 deletion             | -                           | 2 (7%)                      |
| Deletion/insertion      | 12 (38%)                    | 25 (89%)                    |
| Total mutants analyzed: | 32 (100%)                   | 28 (100%)                   |
|                         |                             | <i>P</i> <0.0001            |

### Table 20s. Analysis of mutations formed during TLS across a 12 hydrocarbon chain (M12) in $Rev3L^{+/+}$ and $Rev3L^{-/-}$ MEFs

The experiment was performed as described in the legend to Table 13s using a plasmid mixture containing GP-M12 (kan<sup>R</sup>). Plasmids were extracted from kan<sup>R</sup> colonies containing GP-M12 descendants and subjected to DNA sequence analysis. Complex events include multiple point mutations and small deletions.

<sup>1</sup> *P* value is given for the difference in TLS events (misinsertion or -1 deletion) between  $Rev3L^{+/+}$  (40%) and  $Rev3L^{-/-}$  (11%) MEFs, and was calculated using the chi-square test.

| siRNA   | Gap-lesion<br>plasmid | Transf | ormants         | Plasmid repair, % | TLS, %    | Relative<br>TLS, % |
|---------|-----------------------|--------|-----------------|-------------------|-----------|--------------------|
|         |                       | KanR   | Cm <sup>R</sup> |                   |           |                    |
| Control | BP-G                  | 169    | 1516            | 12.6±1%           | 10.9±1%   | 100                |
| REV3L   | BP-G                  | 113    | 2764            | 4.2±1%            | 2.0±0.5%  | 18.3               |
| Control | cisPt GG              | 57     | 305             | 21.2±3.3%         | 20.4±2.7% | 100                |
| REV3L   | cisPt GG              | 24     | 471             | 6.1±2%            | 3.7±0.8%  | 18.1               |
| Control | TT CPD                | 142    | 190             | 73.8±7%           | 73.8±7%   | 100                |
| REV3L   | TT CPD                | 201    | 369             | 55.6±6%           | 55.6±6%   | 75.3               |
| Control | TT 6-4 PP             | 29     | 195             | 12.5±3%           | 7.2±2.9%  | 100                |
| REV3L   | TT 6-4 PP             | 16     | 224             | 5.9±1%            | 0.7±0.9%  | 9.7                |

Table 21s. Extent of TLS in U2OS cells in which REV3L expression was knocked-down with siRNA

U2OS cells were transiently transfected with *REV3L* siRNA. After incubation of 72h, the plasmid mixtures containing a gap-lesion plasmid (kan<sup>R</sup>) along with the control GP20 (cm<sup>R</sup>) and the carrier plasmids were introduced into the cells. Following incubation of 8h to allow TLS, the DNA was extracted and used to transform an *E. coli* indicator strain. Plasmid survival levels were calculated by the ratio of kan<sup>R</sup>/cm<sup>R</sup> colonies. TLS levels were calculated by reducing the relative ratio of non-TLS events (large insertions / deletions) from the corresponding plasmid survival values. Each point represents the average TLS level of at least four experiments.

| siRNA        | Gap-lesion | Transfo | ormants | Plasmid   | TLS, %   | Relative |
|--------------|------------|---------|---------|-----------|----------|----------|
|              | plasmid    |         |         | repair, % |          | TLS, %   |
|              |            | KanR    | CmR     |           |          |          |
| Control      | GP-BPG1    | 169     | 1516    | 12.6±1    | 10.9±1.1 | 100      |
| REV3L        | GP-BPG1    | 113     | 2764    | 4.2±1     | 2.0±0.5  | 18.3     |
| POLK         | GP-BPG1    | 87      | 1062    | 6.8±1     | 4.7±0.7  | 43.1     |
| POLH         | GP-BPG1    | 98      | 1040    | 10.6±2    | 8.0±1.2  | 73.4     |
| POLK + REV3L | GP-BPG1    | 117     | 2932    | 3.7±1     | 1.8±0.5  | 16.5     |
| POLK + POLH  | GP-BPG1    | 97      | 1566    | 7.1±0.3   | 4.5±0.2  | 41.3     |

Table 22s. Extent of TLS across BP-G in human U2OS cells in which the expression of specific TLS DNA polymerases was knocked-down using siRNA.

U2OS cells were transiently transfected with the indicated polymerase-specific siRNAs. After incubation of 72h, the plasmid mixtures containing the gap-lesion plasmid GP-BP-G1 (kan<sup>R</sup>) along with the control gapped plasmid GP20 (cm<sup>R</sup>) and the carrier plasmid were introduced into the cells. Following incubation of 8h to allow TLS, the DNA was extracted and used to transform a *recA E. coli* indicator strain. Plasmid survival levels were calculated by the ratio of kan<sup>R</sup>/cm<sup>R</sup> colonies. TLS levels were calculated by multiplying the plasmid repair extent by the fraction of TLS events (i.e., excluding large deletions and insertions) as determined by DNA sequence analysis of individual clones (shown in Table 1). Each point represents the average TLS level of 4-7 experiments.

| siRNA        | Gap-lesion<br>plasmid | Transfo          | ormants         | Plasmid<br>repair, % | TLS, %   | Relative<br>TLS, % |
|--------------|-----------------------|------------------|-----------------|----------------------|----------|--------------------|
|              |                       | Kan <sup>R</sup> | Cm <sup>R</sup> |                      |          |                    |
| Control      | GP-cisPt-GG           | 57               | 305             | 21.2±3.3             | 20.4±2.7 | 100                |
| REV3L        | GP-cisPt-GG           | 24               | 471             | 6.1±2                | 3.7±0.8  | 18.1               |
| POLK         | GP-cisPt-GG           | 96               | 640             | 15±3.7               | 13.4±3   | 65.7               |
| POLH         | GP-cisPt-GG           | 84               | 1222            | 10.9±1.1             | 9.5±0.6  | 46.6               |
| POLH + REV3L | GP-cisPt-GG           | 76               | 1821            | 6.2±2                | 4±0.6    | 19.6               |
| POLK + POLH  | GP-cisPt-GG           | 82               | 1840            | 5.8±0.3              | 4.6±0.2  | 22.5               |

Table 23s. Extent of TLS across cisPt-GG in human U2OS cells in which the expression of specific TLS DNA polymerases was knocked-down using siRNA.

U2OS cells were transiently transfected with the indicated polymerase-specific siRNAs. After incubation of 72h, the plasmid mixtures containing the gap-lesion plasmid GP-cisPt-GG (kan<sup>R</sup>) along with the control gapped plasmid GP20 (cm<sup>R</sup>) and the carrier plasmid were introduced into the cells. Following incubation of 8h to allow TLS, the DNA was extracted and used to transform a *recA E. coli* indicator strain. Plasmid survival levels were calculated by the ratio of kan<sup>R</sup>/cm<sup>R</sup> colonies. TLS levels were calculated by multiplying the plasmid repair extent by the fraction of TLS events (i.e., excluding large deletions and insertions) as determined by DNA sequence analysis of individual clones (shown in Table 1). Each point represents the average TLS of 4-7 experiments.

### **Supplementary Materials and Methods**

#### **Construction of DNA substrates and plasmids**

The DNA sequences in the vicinity of the gap-lesion structure of the gap-lesion plasmids used in this

study were as follows (the lesions are in bold face type and underlined):

| AP site<br>5'-CAACGAAGTGATTCCCGTCGTGACTG<br>3'-GTTGCTTCACTAAGG-5'               | GAAAACCCTGGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5' |
|---------------------------------------------------------------------------------|-------------------------------------------------------|
| GP-BP-G1<br>5'-CAACGAAGTGATTCCGGCAT <u>G</u> CGTCCT<br>3'-GTTGCTTCACTAAGG-5'    | CACCTGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5'      |
| GP-cisPt-GG<br>5'-CAACGAAGTGATTCCTCTCTA <u>GG</u> CCTT<br>3'-GTTGCTTCACTAAGG-5' | CTGAGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5'       |
| GP-M12<br>5′-CAACGAAGTGATTCCCGACGCGAGAA<br>3′-GTTGCTTCACTAAGG-5′                | GTCAACCCTGGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5' |
| GP-4-OHEN-C<br>5'-CAACGAAGTGATTCCTCGGTAG <u>C</u> GATC<br>3'-GTTGCTTCACTAAGG-5' | GGTCGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5'       |
| GP-TT-CPD<br>5'-CAACGAAGTGATTCCTCGCAAG <u>TT</u> GGA<br>3'-GTTGCTTCACTAAGG-5'   | AGCTGGCTACTTGAACCAG-3'<br>3'-CCGATGAACTTGGTC-5'       |
| GP-TT-6-4PP<br>5'-caacgaagtgattcctcgcaag <b>tt</b> gga                          | AGGAGGCTACTTGAACCAG-3'                                |

3'-GTTGCTTCACTAAGG-5' 3'-CCGATGAACTTGGTC-5'

We have previously described the construction of gapped plasmids containing a site-specific synthetic AP site (Reuven et al., 1999), (+)–*trans*-BPDE- $N^2$ -dG adduct (Avkin et al., 2004), a dodecamethylene chain, M12 (Maor-Shoshani et al., 2003), cisplatin-GG (Avkin et al., 2006)), and TT CPD or TT 6-4 PP (Hendel et al., 2008). A gap-lesion plasmid with a site-specific 4-OHEN-C adduct, derived from the

Accurate & mutagenic two-polymerase TLS with pol

reaction of 4-hydroxyequilenin (4-OHEN) with the single C residue in the 11-mer oligonucleotide 5'-GGTAGCGATGG-3' was generated as previously described (Kolbanovskiy et al., 2005). The structure of the 4-OHEN-C adduct was elucidated by Shen et al. (Shen et al., 1997). It was extended to a 53-mer oligonucleotides by ligating to its 5' end the 21-mer 5'-ACCGCAACGAAGTGATTCCTC-3', and to its 3' the 21-mer 5'- CTGGCTACTTGAACCAGACCG-3', using as a scaffold the 34-mer 5'- AAGTAGCCAGCCATCGCTACCGAGGAATCAC-3'. The resulting 53-mer was separated from the scaffold and excess 21-mers on a 12% denaturing polyacrylamide gel containing 8 M urea, and used to construct the gap-lesion plasmid GP-4-OHEN-C. We have also prepared gap-lesion plasmids with gaps starting 11 nucleotides upstream the lesion (an abasic site or BP-G), and extending 200-350 nucleotides past the lesion, as previously described (Tomer et al., 1998). TLS with these substrates was the same as with the corresponding substrates with the small gaps (data not shown).

#### **RT-PCR** and immunoblot analysis

Total RNA was extracted from cells using the RNeasy mini kit from Qiagen. Total RNA (lug) was used for cDNA Synthesis and RT-PCR (Access RT-PCR system, Promega) using the primers 5'-ACCACAGTCCATGCCATCAC-3' and 5'-TCCACCACCCTGTTGCTGTA-3' for the GAPDH gene; 5'-GCTAAGAGGCTGTGCCCACAA-3' and 5'-TCACTGAATGTCCTCTCAACG-3' for the hPOLK gene; 5'-GCGGTGACAGCCACTAAGAA-3' AND 5'-GCGTTTATTAGTGCAGGCCAA-3' for the *hPOLH* 5'-AAGGAGCCACTAAGGAGCAG-3' gene, and the primers and 5'-GATGACGTATGGCACTCG-3' common to the human REV3L and mouse Rev3L genes. RT-PCR was performed by 24 cycles of 1 min at 94°C, 45 sec at 60°C, and 45 sec at 68°C. Immunoblot analysis of poly was performed with a total of 40 µg whole cell lysate, using a mouse monoclonal anti-poly antibody (Santa Cruz-17770).

#### Cell cultures.

 $Rev3L^{-/-}$  and  $Rev3L^{+/+}$  mouse embryonic fibroblasts were generated as previously described (Wittschieben et al., 2006). They were both pol iota-deficient, with the 129 strain mutation, as verified by PCR analysis.  $Rev3L^{-/-}$  MEFs and U2OS and XP12RO (an SV40-transformed cel line from an XPA patient) cells were maintained in Dulbeco's Modified Engle's Medium (DMEM) supplemented with 2 mM glutamine (GIBCO/BRL). The medium was supplemented with 10% fetal bovine serum (Hyclone), 100 units/ml of penicillin and 100 µg/ml of streptomycin (Biological Industries). The cells were incubated at 37°C in a 5% CO<sub>2</sub> atmosphere. The doubling time of the U2OS cells was 24 h.

#### References

- Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E.C. and Livneh, Z. (2004) Quantitative analysis of translession DNA synthesis across a benzo[*a*]pyrene-guanine adduct in mammalian cells. The Role of DNA polymerase kappa. J. Biol. Chem., 279, 53298-53305.
- Avkin, S., Sevilya, Z., Toube, L., Geacintov, N.E., Chaney, S.G., Oren, M. and Livneh, Z. (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. *Mol. Cell*, 22, 407-413.
- Hendel, A., Ziv, O., Gueranger, Q., Geacintov, N. and Livneh, Z. (2008) Reduced fidelity and increased efficiency of translession DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproducts, in human cells lacking DNA polymerase eta. *DNA Repair*, 7, 1636-1646
- Kolbanovskiy, A., Kuzmin, V., Shastry, A., Kolbanovskaya, M., Chen, D., Chang, M., Bolton, J.L. and Geacintov, N.E. (2005) Base selectivity and effects of sequence and DNA secondary structure on the formation of covalent adducts derived from the equine estrogen metabolite 4hydroxyequilenin. *Chem. Res. Toxicol.*, **18**, 1737-1747.
- Maor-Shoshani, A., Ben-Ari, V. and Livneh, Z. (2003) Lesion bypass DNA polymerases replicate across non-DNA segments. *Proc. Natl. Acad. Sci. USA*, **100**, 14760-14765.
- Reuven, N.B., Arad, G., Maor-Shoshani, A. and Livneh, Z. (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA and SSB, and specialized for translesion replication. J. Biol. Chem., 274, 31763-31766.
- Shen, L., Qiu, S., van Breeman, R.B., Zhang, F., Chen, Y. and Bolton, J.L. (1997) Reaction of the Premarin® metabolite 4-hydroxyequilenin semiquinone radical with 2'-deoxyguanosine: Formation of unusual cyclic adducts. J. Am. Chem. Soc., 119, 11126-11127.
- Tomer, G., Reuven, N.B. and Livneh, Z. (1998) The beta subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme. *Proc. Natl. Acad. Sci. USA*, **95**, 14106-14111.
- Wittschieben, J.P., Reshmi, S.C., Gollin, S.M. and Wood, R.D. (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. *Cancer Res.*, **66**, 134-142.