ON RELIABLE DISCOVERY OF MOLECULAR SIGNATURES ADDITIONAL FILE 1: OPTIMALITY AND UNIQUENESS OF S^*

The notation here is the same as in the paper. Sets are used as indexes X_S to denote $(X_i)_{i \in S}$. The complement of a set S is denoted $\neg S$, and we write $X_{\neg i}$ for all elements of X except X_i . Probability density functions (over the continuous \mathcal{X}) are denoted f, while or probability mass functions (over the discrete \mathcal{Y}) are denoted p.

We first state our definition of S^* .

Definition 1. For any set $S \subseteq \{1, \ldots, n\}$, let g_S^* denote the optimal classifier over the corresponding domain \mathcal{X}_S . The optimal signature is defined as

$$S^* = \{i : R(g^*_{\neg i}) > R(g^*)\},\$$

where for any classifier g we define $R(g) = P(g(X) \neq Y)$.

The following establishes uniqueness of the optimal classifier g^* , and thereby uniqueness of S^* .

Theorem 2. For any f(x, y) such that P(p(y | X) = 1/2) = 0, the optimal classifier is unique, that is,

$$P(g(X) \neq g^*(X)) > 0 \iff R(g) > R(g^*)$$

for all classifiers g.

Proof. Take any classifier g and fix an $y \in \mathcal{Y}$. We have that

$$P(g(x) \neq Y) - P(g^*(x) \neq Y) = (2p(y \mid x) - 1)(1_{\{g^*(x) = y\}} - 1_{\{g(x) = y\}})$$

= $|2p(y \mid x) - 1|1_{\{g^*(x) \neq g(x)\}}.$

Integrating with respect to f(x)dx we obtain

$$R(g) - R(g^*) = \int_{\mathcal{X}} |2p(y | x) - 1| \mathbf{1}_{\{g^*(x) \neq g(x)\}} f(x) dx.$$

The assumption P(p(y|X) = 1/2) = 0 is equivalent to |2p(y|x) - 1| > 0 with probability 1. Therefore, the integral is positive if and only if

$$\int_{\mathcal{X}} 1_{\{g^*(x) \neq g(x)\}} f(x) dx = P(g(X) \neq g^*(X)) > 0.$$

The following lemma establishes an equivalent formulation of S^* which is useful in proving its optimality.

1

Lemma 3. For any f(x, y) such that P(p(y | X) = 1/2) = 0, it holds that $S^* = \{i : P(g^*(X) \neq g^*_{\neg i}(X_{\neg i})) > 0.\}$

Proof. Follows immediately the definition and Lemma 2.

We now prove that $g_{S^*}^*$ is optimal for strictly positive distributions.

Theorem 4. For any f(x, y) satisfying f(x) > 0 and P(p(y | X) = 1/2) = 0, the set S^* satisfies $g_{S^*}^*(X_{S^*}) = g^*(X)$ with probability 1.

Proof. Take any $i, j \notin S^*$. By Lemma 3, $g^*(X) = g^*_{\neg i}(X_{\neg i}) = g^*_{\neg j}(X_{\neg j})$ with probability 1. We will show this implies that $g^*(X)$ is constant with respect to $X_{i,j}$ with probability 1. To see this, fix any x and assume to the contrary that there exists a point

$$x' = (x_{\neg\{i,j\}}, x'_{i,j})$$

such that $g^*(x) \neq g^*(x')$. Then we can construct a third point

$$x'' = (x_{\neg\{i,j\}}, x_i, x'_j)$$

and by the assumptions this point must satisfy both

$$g^*(x'') = g^*_{\neg i}(x''_{\neg i}) = g^*_{\neg i}(x'_{\neg i}) = g^*(x')$$

and

$$g^*(x'') = g^*_{\neg j}(x''_{\neg j}) = g^*_{\neg j}(x_{\neg j}) = g^*(x).$$

Since f(x'') > 0, this is a contradiction. Therefore we must have

$$g^*(X) = g^*_{\neg\{i,j\}}(X_{\neg\{i,j\}})$$

with probability 1. Repeating this argument for each element of $\neg S^*$ yields the result.