Aza- and Oxadithiolates are Proton Relays in Functional Models for the [FeFe]-Hydrogenases

Bryan E. Barton, Matthew T. Olsen, and Thomas B. Rauchfuss* School of Chemical Sciences, University of Illinois, Urbana, IL 61801

Supporting Information

- 1) Experimental Procedures
- 2) Supporting Figures
- Figure S1. High-field ¹H NMR spectra of $[\mathbf{3}(t-H)]BAr_{4}^{F}$ and $[\mathbf{3}(\mu-H)]BAr_{4}^{F}$.
- Figure S2. FT-IR spectra of **3** and [**3**(*t*-H)]BF₄.
- Figure S3. ³¹P NMR spectra of $[2(t-H)]BAr_{4}^{F}$ and $[3(t-H)]BAr_{4}^{F}$ before and after addition of NEt₃.
- Figure S4. ³¹P NMR spectra of $[3(t-H)]BAr_{4}^{F}$ after addition of various bases
- Figure S5. ³¹P NMR spectra of $[2(t-H)]BAr_4^F$ before and after addition of PMe₂Ph and PBu₃.
- Figure S6. ¹H NMR spectra of $[1(t-H)]BAr_{4}^{F}$ with large excess of NEt₃.
- Figure S7. ¹H NMR spectra of $[1(\mu-H)]BAr^{F_{4}}$, $[2(\mu-H)]BAr^{F_{4}}$, and $[3(\mu-H)]BAr^{F_{4}}$ upon treatment with NEt₃.
- Figure S8. ³¹P NMR spectra of **2** before and after addition of [HPPh₃]BAr^F₄.
- Figure S9. ³¹P NMR spectra of $[1(t-H)]BAr_4^F$ at -80 °C.
- Figure S10. ³¹P NMR spectra for the protonation of **3**.
- Figure S11. FT-IR spectra of [2H]BAr^F₄ at -40 °C, in CH₂Cl₂ and separately in MeOH solutions.
- Figure S12. FT-IR spectra of $[2(t-H)]BAr_4^F$ at -40 °C titrated with $[NBu_4][BF_4]$.
- Figure S13. Cyclic voltammograms of $[2(t-H)]BAr_{4}^{F}$ and $[3(t-H)]BAr_{4}^{F}$ with [HPMe₂Ph]BF₄ and HBF₄ Et₂O, respectively.
- Figure S14. Plots of $[H^+]$ and $[H^+]^{1/2}$ vs i_c/i_p for $[\mathbf{2}(t-H)]BF_4$.
- Figure S15. Plots of $[H^+]$ and $[H^+]^{1/2}$ vs i_c/i_p for $[1(t-H)]BF_4$ and $[3(t-H)]BF_4$.
- Figure S16. Kinetics of isomerization of $[\mathbf{3}(t-H)]BAr_{4}^{F}$ to $[\mathbf{3}(\mu-H)]BAr_{4}^{F}$.
- 3) Supporting Information References

1.) Experimental Procedures

Manipulations were conducted using standard Schlenk techniques. Solvents were filtered through activated alumina and subsequently degassed. ¹H and ³¹P NMR spectra were acquired on a Unity Varian 500 or a Unity Varian 600 spectrometer. IR spectra were collected on a Mattson Infinity Gold FTIR spectrometer. *Cis*-1,2-bis(diphenylphosphino)ethylene (dppv) and HBF₄:Et₂O solution were purchased from Aldrich. Fe₂(S₂C₃H₆)(CO)₂(dppv)₂ (**1**),¹ Fe₂[S₂(CH₂)₂NH](CO)₂(dppv)₂ (**2**),¹ Fe₂(S₂C₂H₄O)(CO)₆ (**3**),² and [H(Et₂O)₂]BAr^{F₄3} were prepared according to literature procedures (BAr^{F₄-= B(C₆H₃-3,5-(CF₃)₂)₄⁻).}

Fe₂[(SCH₂)₂O](CO)₄(dppv). To a solution of 0.518 g (1.34 mmol) Fe₂(S₂C₂H₄O)(CO)₆ and 0.549 g (1.38 mmol) of dppv in 20 mL of MeCN was added 0.100 g (0.133 mmol) of Me₃NO in 5 mL of MeCN. The solution immediately darkened and over several hours thickened with a brown precipitate. Solvent was removed in vacuo, the solid was dissolved in 5 mL of CH₂Cl₂, and precipitated by addition of 40 mL of hexane. This process was repeated twice to give a fluffy golden powder of the crude compound that was sufficiently pure for the next step. Yield: 0.878 g (90%). ¹H NMR (200 MHz, CD₂Cl₂, 20 °C): δ ~8.0 (m, 4H, C₂H₂), ~7.5 – 7.2 (m, 20H, C₂H₂P), 3.86 (d, SCH₂, *J*_{H,H} = 9.6 Hz), 3.37 (d, SCH₂, *J*_{H,H} = 8.4 Hz). ³¹P NMR (200 MHz, CD₂Cl₂, 20 °C): δ 96.9 (s, dppv), 83.6 (s, dppv). FT-IR (CH₂Cl₂): v_{CO} = 2026, 1955, 1918 cm⁻¹. FD-MS: m/z = 728.0 ([Fe₂[(SCH₂)₂O](CO)₄(dppv)]⁺).

Fe₂[(SCH₂)₂O](CO)₂(dppv)₂, (3). A solution of 0.266 g of Fe₂[(SCH₂)₂O](CO)₄(dppv) (0.37 mmol) and 0.160 g of dppv (0.40 mmol) in 75 mL of toluene was photolyzed with a 100 W UV immersion lamp, λ_{max} = 356 nm (Spectroline), until the IR spectrum showed complete consumption of the starting material (~20 hours). The solution was dried in vacuo, redissolved in 5 mL of CH₂Cl₂ and precipitated upon addition of 40 mL of hexanes. This process was repeated twice or until the filtrate was clear, yielding a dark green powder. Yield: 0.201g (51.5%). ¹H NMR (500 MHz, CD₂Cl₂, 20 °C): δ 8.02 (m, 4H, C₂H₂P), 7.9 – 7.1 (m, 40H, C₂H₂P), 2.86 (2, (SCH₂)₂O, 4H). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 20 °C): δ 91.6 (s). IR (CH₂Cl₂): v_{CO} = 1891, 1871 cm⁻¹. Anal. Calcd for C₅₆H₄₈Fe₂O₃P₄S₂ (found): C, 62.94 (63.00); H, 4.53 (4.43).

[HFe₂[(SCH₂)₂O](μ-CO)(dppv)₂]BAr^F₄, [3H]BAr^F₄. In a J. Young NMR tube CD₂Cl₂ was distilled onto Fe₂[(SCH₂)₂O](CO)₂(dppv)₂ (7 mg, 0.007 mmol) and [H(Et₂O)₂][BAr^F₄] (7 mg, 0.007 mmol). The J. Young tube was then placed directly into a -78 °C bath and analyzed with low temperature NMR spectroscopy. High field ¹H NMR (600 MHz, CD₂Cl₂, -40 °C): δ - 2.7 (t, Fe-H, ²J_{PH} = 72 Hz). ³¹P{¹H} NMR (242 MHz, CD₂Cl₂, -40 °C): δ 99 (s), 94 (s), 89 (s), 69 (s). After isomerization: ¹H NMR (600 MHz, CD₂Cl₂, 25 °C): δ - 14.5 (qd, Fe-H, J_{PH1,2,3} ~ 20 Hz, J_{PH4} ~ 7 Hz), δ - 15.4 (tt, Fe-H, J_{PH1,2} ~ 20 Hz, J_{PH3,4} ~ 7 Hz). ³¹P{¹H} NMR (242 MHz, CD₂Cl₂, 25 °C): δ 89, 88; 86, 84, 83, 78. **Isomerization of [3(t-H)]**⁺ **to [3(µ-H)]**⁺. In a J. Young NMR tube CD_2CI_2 (0.7 mL) was distilled onto **3** (7 mg, 0.007 mmol), [H(Et₂O)₂]BAr^F₄ (7 mg, 0.007 mmol), and hexamethylbenzene (0.5 mg, 0.005 mmol). The J. Young tube was then placed into a -40 °C bath and analyzed with low temperature NMR spectroscopy. Data were collected as an array over 2 h showing nearly complete consumption of **2**H⁺ and growth of two isomers of **2**µ⁺. The terminal hydride triplet at δ -2.7 was integrated from each FID against the internal standard hexamethylbenzene. The isomerization of terminal hydride followed first order kinetics (see figure S15).

Preparation of [HPPh₃]BAr^F₄. A solution of [H(Et₂O)₂][BAr^F₄] (0.385 g, 0.377 mmol) in Et₂O (10 mL) at -40 °C was transferred via cannula into a solution of PPh₃ (0.097 g, 0.370 mmol) in Et₂O (10 mL) at -40 °C. Solvent was removed under vacuum, leaving a white solid. Yield: 0.350 g (83%). ³¹P{¹H} NMR (242 MHz, CD₂Cl₂, 20 °C): δ 7.0 (s). ¹H NMR (600 MHz, CD₂Cl₂, 20 °C): δ 8.28 (d, 1H, [*H*PPh₃]⁺, J_{PH} = 498 Hz), 7.6-8.0 (m, 15H, [HP*Ph*₃]), 7.55 (s, 4H, *p*-C*H*, [BAr^F₄]⁻), 7.73 (s, 8H, *o*-CH, [BAr^F₄]⁻).

Electrochemistry. Cyclic voltammetry experiments were carried out in a ca. 20-mL one-compartment glass cell. The working electrode was a glassy carbon disk (0.3 cm in diameter). The reference electrode for experiments conducted less than 0 °C was a pseudo-reference silver wire, for experiments > 0 °C, a Ag/AgCl electrode (ca. -0.50 V vs Fc/Fc⁺) was employed. The counter electrode was a Pt wire. The electrolyte was 0.1 M Bu₄NPF₆. The concentration of the organometallic complex was 1 mM.

Proton Reduction Catalysis Cyclic Voltammetry for [3(*t***-H)]BF₄. A at - 40 °C solution of 3** (7.5 mg, 0.007 mmol) in 6 mL CH₂Cl₂ was treated with aliquots (10 μ L, 0.07 mmol) of a 0.691 M HBF₄·Et₂O solution in CH₂Cl₂. Cyclic voltammograms were collected at 50 mV/s.

Proton Reduction Catalysis Cyclic Voltammetry for [2(*t***-H)]BF₄. A -40 °C solution of 2** (7.5 mg, 0.007 mmol) in 6 mL CH₂Cl₂ was treated at -40 °C with aliquots (100 μ L, 0.07 mmol) of a solution of 0.0691 M [HPMe₂Ph]BF₄ in CH₂Cl₂. Cyclic voltammograms were recorded at 50 mV/s.

2) Supplemental Figures

Figure S1. ¹H NMR spectra of a CD_2Cl_2 solution of **3** after protonation with $[H(Et_2O)_2]BAr^{F_4}$.

- a: The kinetically-favored terminal hydride (-75 °C, 600 MHz) showing $[3(t-H)]BAr^{F_4}$ as well as a small amount of the first isomer of the bridging hydride (δ -14.4)
- b: After isomerizing to [3(μ-H)]BAr^F₄ upon warming to 25 °C (recorded at 500 MHz). The bridging hydride exists as two predominant isomers at δ 14.5 (qd, Fe-H, J_{PH1,2,3} ~ 20 Hz, J_{PH4} ~ 7 Hz for the asymmetric (apical,basal-dppv)(basal,basal-dppv) isomer) and at δ 15.4 (tt, Fe-H, J_{PH1,2} ~ 20 Hz, J_{PH3,4} ~ 7 Hz for the dissymmetric (apical,basal-dppv)₂ isomer.

Figure S2. FT-IR spectra (-40 °C, CH_2CI_2) of **3** (blue) and $[3(t-H)]BF_4$ (red).

Figure S3. ³¹P{¹H} NMR (242 MHz, CD₂Cl₂, -75 °C) spectra before (left) and after (right) treatment of solutions (CD₂Cl₂, -75 °C) of [2(t-H)]BAr^F₄ and [3(t-H)]BAr^F₄ with ~100 equiv of Et₃N. Upon addition of NEt₃ to [2(t-H)]BAr^F₄, resulting ³¹P NMR (upper left) shows complete conversion to **2**, whereas for [3(t-H)]BAr^F₄, no change (lower left) is seen until warming near 0 °C (see Figure S4).

top: ~1 equiv of tetramethylguanidine,

middle: ~ 1 equiv of PPh₃,

bottom: >100 equiv NEt₃.

The spectra show about 50% conversion to **3** (δ 90) and about 50% conversion to [**3**(μ -H)]BAr^F₄ (single isomer, δ 89, 88), regardless of the strength and amount of base.

Figure S5. ³¹P{¹H} NMR (242 MHz, CD₂Cl₂, -60 °C) spectra of [2(t-H)]BAr^F₄ *top:* before, and

middle: after treatment with ~1 equiv of PMe₂Ph (showing no reaction), then repeated by

bottom: treatment with ~ 1 equiv of PBu₃ showing complete conversion to **2** and some [HPBu₃]BAr^F₄ at δ 11 and PBu₃ at δ -33. Additions were conducted at -60 °C. In related experiments, CD₂Cl₂ (-80 °C) solutions of **1** and **3** were treated with [H(OEt₂)₂]BAr^F₄ (to give [**3**(*t*-H)]BAr^F₄ and [**1**(*t*-H)]BAr^F₄, respectively) followed by treatment with PPh₃, and then warming to room temperature. The sample of [**3**(*t*-H)]BAr^F₄ converted to a mixture of **3** and [**3**(μ -H)]BAr^F₄ (two isomers). The sample of [**3**(*t*-H)]BAr^F₄ converted to [**1**(μ -H)]BAr^F₄ (two isomers).

82

Figure S6. ¹H NMR (500 MHz, CD₂Cl₂) spectra (two views of the same spectrum) for solutions of [1(*t*-H)]BAr^F₄, generated at –35 °C, treated at that same temperature with a large excess of NEt₃ (δ 2.5, 1.0), followed by warming to 20 °C, whereupon the spectrum was recorded. The terminal hydride resonates at δ -3.5 (triplet) and the bridging hydride isomers at δ -14.5 and -15.7 (multiplets).

Figure S7. ¹H NMR (500 MHz, CD₂Cl₂) spectra of solutions of three μ -hydride compounds after treatment with large excess of NEt₃, after equilibration for 24 h at 20 °C. The high-field region (right) was magnified by 500x. *top spectrum:* [1(μ -H)]BAr^F₄, *middle spectrum:* [2(μ -H)]BAr^F₄, *bottom spectrum:* [3(μ -H)]BAr^F₄.

Figure S8. ³¹P{¹H} NMR (242 MHz, CD_2CI_2 , -80 °C) spectra of solutions of **2** before (top spectrum) and after (bottom spectrum) treatment with ~1 equiv of [HPPh₃]BAr^F₄, showing complete conversion to [**2**(*t*-H)]BAr^F₄.

Figure S9. ³¹P NMR (242 MHz, CD_2Cl_2) spectrum of [1(*t*-H)]BAr^F₄ generated by protonation of **1** with [H(Et₂O)₂]BAr^F₄ at -80 °C.

Figure S10. ³¹P{¹H} NMR (242 MHz, CD₂Cl₂) spectra of **3** (-90 °C) before (top) and after (-90 °C, middle) treatment with 1 equiv of $[H(Et_2O)_2]BAr^{F_4}$, showing complete conversion to $[\mathbf{3}(t-H)]BAr^{F_4}$. Bottom: Reaction of **3** (-80 °C, CD₂Cl₂) with ~1.2 equiv $[HPPh_3]BF_4$, showing mostly unreacted **3** (the right spectrum shows the signals for $HPPh_3^+$ as well as trace PPh₃. The low field signal is slightly broadened due to the onset of decoalescence.

Figure S11. *In situ* ReactIR spectra of [**2**H]BAr^F₄ in MeOH (**a**, -40 °C, rough baseline arises in MeOH soln) showing *N*-protonated tautomer (1910, 1890 cm⁻¹) and in CH₂Cl₂ (**b**, -40 °C) showing terminal hydride tautomer (1965, 1910 cm⁻¹).

Figure S12. *In situ* ReactIR spectra of [**2**H]BAr^F₄ (CD₂Cl₂ solution) showing terminal hydride tautomer at -40 °C (1965, 1910 cm⁻¹) titrated with increasing equivs of [NBu₄]BF₄. The growth of the ammonium tautomer (1965, 1910 cm⁻¹) upon addition of BF₄⁻ is consistent with similar p*K*_a's of the ammonium and the terminal hydride tautomers. The spectra are normalized with respect to the band near 1970 cm⁻¹.

Figure S13. Cyclic voltammagrams for $[2(t-H)]BF_4$ (left) and $[3(t-H)]BF_4$ (right) (-20 °C, 1 mM catalyst, ~1 mM ferrocene) with increasing amounts of [HPMe₂Ph]BF₄ and HBF₄ Et₂O, respectively. The presence of unprotonated **2** and **3** is seen at ~-200 mV. The event at ~-2 V for $[3(t-H)]BF_4$ is attributed to catalysis by $[3(\mu-H)]BF_4$.

Figure S14. Plot of $[H^+]^{1/2}$ (left) and $[H^+]$ (right) vs. current (i_c/i_p) for $[2(t-H)]BF_4$ (-20 °C, 1 mM catalyst, [HPMe₂Ph]BF₄). i_c is the peak catalytic current, i_p is the peak current in the absence of acid.

Figure S15. Plots of $[H^+]^{1/2}$ (left) and $[H^+]$ (right) vs. current (i_c/i_p) for $[1(t-H)]BF_4$ and $[3(t-H)]BF_4$ (-20 °C, 1 mM catalyst, HBF₄·Et₂O).

Figure S16. Plot of decay of terminal hydride $[\mathbf{3}(t-H)]BAr^{F_{4}}(-10 \text{ °C}, CH_{2}CI_{2}, soln.)$ as assayed by ¹H NMR spectra. The products are isomers of $[\mathbf{3}(\mu - H)]BAr^{F_{4}}$. Scale on left shows ln(signal intensity) in arbitrary units.

3) Supporting References

- 1. Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2008, 47, 2261-2263.
- **2.** Song, L.-C.; Yang, Z.-Y; Bian, H.-Z.; Hu, Q.-M. *Organometallics*. **2004**, *23*, 3082-3084.
- 3. Yakelis, N. A.; Bergman, R. G. Organometallics. 2005, 3579-3581.