Aza- and Oxadithiolates are Proton Relays in Functional Models for the [FeFe]-Hydrogenases

 Bryan E. Barton, Matthew T. Olsen, and Thomas B. Rauchfuss* School of Chemical Sciences, University of Illinois, Urbana, IL 61801

Supporting Information

- 1) Experimental Procedures
- 2) Supporting Figures
- Figure S1. High-field ¹H NMR spectra of $[3(t-H)]BAr_{4}^{F}$ and $[3(\mu-H)]BAr_{4}^{F}$.
- Figure S2. FT-IR spectra of **3** and $[3(t-H)]BF₄$.
- Figure S3. $3^{1}P$ NMR spectra of $[2(t-H)]BAr^{F4}$ and $[3(t-H)]BAr^{F4}$ before and after addition of $NEt₃$.
- Figure S4. $31P$ NMR spectra of $[3(t-H)]BArF_4$. after addition of various bases
- Figure S5. $3^{1}P$ NMR spectra of $[2(t-H)]BAr^{F}$ ₄ before and after addition of PMe₂Ph and $PBu₃$.
- Figure S6. ¹ H NMR spectra of $[1(t\text{-}H)]\text{BAr}^{\text{F}}$ ₄ with large excess of NEt $_3$.
- Figure S7. ¹ H NMR spectra of [**1**(μ-H)]BAr^F 4, [**2**(μ-H)]BAr^F 4, and [**3**(μ-H)]BArF 4 upon treatment with $NEt₃$.
- Figure S8. $31P$ NMR spectra of 2 before and after addition of $[HPPh_3]BAr_{4}^F$.
- Figure S9. $3^{1}P$ NMR spectra of $[1(t-H)]BAr_{4}^{F}$ at -80 °C.
- Figure S10. 31P NMR spectra for the protonation of **3**.
- Figure S11. FT-IR spectra of [2H]BAr^F₄ at -40 °C, in CH₂CI₂ and separately in MeOH solutions.
- Figure S12. FT -IR spectra of $[2(t-H)]BAr^F₄$ at -40 °C titrated with $[NBu₄][BF₄].$
- Figure S13. Cyclic voltammograms of $[2(t-H)]BAr^F₄$ and $[3(t-H)]BAr^F₄$ with $[HPMe₂Ph]BF₄$ and $HBF₄Et₂O$, respectively.
- Figure S14. Plots of $[H^+]$ and $[H^+]^{1/2}$ vs i_c/i_p for $[2(t-H)]BF_4$.
- Figure S15. Plots of [H⁺] and [H⁺]^{1/2} vs i_c/i_p for [1(t-H)]BF₄ and [3(t-H)]BF₄.
- Figure S16. Kinetics of isomerization of $[3(t)$ H)]BAr^F₄ to $[3(\mu)$ -H)]BAr^F₄.
- 3) Supporting Information References

1.) Experimental Procedures

Manipulations were conducted using standard Schlenk techniques. Solvents were filtered through activated alumina and subsequently degassed. 1 H and ³¹P NMR spectra were acquired on a Unity Varian 500 or a Unity Varian 600 spectrometer. IR spectra were collected on a Mattson Infinity Gold FTIR spectrometer. Cis-1,2-bis(diphenylphosphino)ethylene (dppv) and HBF₄ Et₂O solution were purchased from Aldrich. $Fe_2(S_2C_3H_6)(CO)_2(dppv)_2$ (1),¹ $\mathsf{Fe}_2[\mathsf{S}_2(\mathsf{CH}_2)_2\mathsf{NH}](\mathsf{CO})_2(\mathsf{dppv})_2\;$ (2), 1 $\mathsf{Fe}_2(\mathsf{S}_2\mathsf{C}_2\mathsf{H}_4\mathsf{O})(\mathsf{CO})_6\;$ (3), 2 and $[\mathsf{H}(\mathsf{Et}_2\mathsf{O})_2]\mathsf{B}\mathsf{Ar}^{\mathsf{F}_4^{\mathsf{F}_3}}$ were prepared according to literature procedures $(BArf^{-} + B(C_6H_3 - 3, 5-(CF_3)_2)_4$.

Fe₂[(SCH₂)₂O](CO)₄(dppv). To a solution of 0.518 g (1.34 mmol) $Fe₂(S₂C₂H₄O)(CO)₆$ and 0.549 g (1.38 mmol) of dppv in 20 mL of MeCN was added 0.100 g (0.133 mmol) of Me₃NO in 5 mL of MeCN. The solution immediately darkened and over several hours thickened with a brown precipitate. Solvent was removed in vacuo, the solid was dissolved in 5 mL of CH_2Cl_2 and precipitated by addition of 40 mL of hexane. This process was repeated twice to give a fluffy golden powder of the crude compound that was sufficiently pure for the next step. Yield: 0.878 g (90%). ¹H NMR (200 MHz, CD₂Cl₂, 20 °C): δ ~8.0 (m, 4H, C₂H₂), ~7.5 – 7.2 (m, 20H, C₂H₂P), 3.86 (d, SCH₂, J_{H,H} = 9.6 Hz), 3.37 (d, SCH_2 , $J_{H,H} = 8.4$ Hz). ³¹P NMR (200 MHz, CD_2Cl_2 , 20 °C): δ 96.9 (s, dppv), 83.6 (s, dppv). FT-IR (CH₂Cl₂): v_{CO} = 2026, 1955, 1918 cm⁻¹. FD-MS: m/z = 728.0 $([Fe_2[(SCH_2)_2O](CO)_4(dppv)]^+).$

Fe₂[(SCH₂)₂O](CO)₂(dppv)₂, (3). A solution of 0.266 g of $Fe_2[(SCH_2)_2O](CO)_4$ (dppv) (0.37 mmol) and 0.160 g of dppv (0.40 mmol) in 75 mL of toluene was photolyzed with a 100 W UV immersion lamp, $\lambda_{\sf max}$ = 356 nm (Spectroline), until the IR spectrum showed complete consumption of the starting material (~20 hours). The solution was dried in vacuo, redissolved in 5 mL of $CH₂Cl₂$ and precipitated upon addition of 40 mL of hexanes. This process was repeated twice or until the filtrate was clear, yielding a dark green powder. Yield: 0.201g (51.5%). 1 H NMR (500 MHz, CD $_2$ Cl $_2$, 20 °C): δ 8.02 (m, 4H, C $_2$ H $_2$ P), 7.9 $-$ 7.1 (m, 40H, C $_2$ H $_2$ P), 2.86 (2, (SCH $_2$) $_2$ O, 4H). 31 P{ 1 H} NMR (202 MHz, CD $_2$ Cl $_2$, 20 °C): δ 91.6 (s). IR (CH₂Cl₂): $v_{\text{CO}} = 1891, 1871 \text{ cm}^{-1}$. Anal. Calcd for $C_{56}H_{48}Fe_2O_3P_4S_2$ (found): C, 62.94 (63.00); H, 4.53 (4.43).

[HFe2[(SCH2)2O](μ**-CO)(dppv)2]BArF 4 , [3H]BAr^F 4.** In a J. Young NMR tube CD_2Cl_2 was distilled onto $Fe_2[(SCH_2)_2O](CO)_2(dppv)_2$ (7 mg, 0.007 mmol) and [H(Et₂O)₂][BAr^F₄] (7 mg, 0.007 mmol). The J. Young tube was then placed directly into a -78 °C bath and analyzed with low temperature NMR spectroscopy. High field ¹H NMR (600 MHz, CD₂Cl₂, -40 °C): δ - 2.7 (t, Fe-H, ²J_{PH} = 72 Hz). $^{31}\mathsf{P}\{^{1}\mathsf{H}\}$ NMR (242 MHz, CD $_{2}$ Cl $_{2}$, -40 °C): δ 99 (s), 94 (s), 89 (s), 69 (s). After isomerization: ¹H NMR (600 MHz, CD₂Cl₂, 25 °C): δ - 14.5 (qd, Fe-H*, J*_{PH1,2,3} ~ 20 Hz, J_{PH4} ~ 7 Hz), δ - 15.4 (tt, Fe-H*, J*_{PH1,2} ~ 20 Hz, J_{PH3,4} ~ 7 Hz). ³¹P{¹H} NMR $(242 \text{ MHz}, \text{CD}_2\text{Cl}_2, 25 \text{ °C})$: δ 89, 88; 86, 84, 83, 78.

Isomerization of [3(*t***-H)]⁺ to [3(μ-H)]⁺. In a J. Young NMR tube CD₂Cl₂** (0.7 mL) was distilled onto 3 (7 mg, 0.007 mmol), $[H(Et_2O)_2]BAr^F{}_4$ (7 mg, 0.007 mmol), and hexamethylbenzene (0.5 mg, 0.005 mmol). The J. Young tube was then placed into a -40 °C bath and analyzed with low temperature NMR spectroscopy. Data were collected as an array over 2 h showing nearly complete consumption of **2**H**⁺** and growth of two isomers of **2**μ**⁺** . The terminal hydride triplet at δ -2.7 was integrated from each FID against the internal standard hexamethylbenzene. The isomerization of terminal hydride followed first order kinetics (see figure S15).

Preparation of [HPPh₃]BAr^F₄. A solution of $[H(Et_2O)_2][BAr^F_4]$ (0.385 g, 0.377 mmol) in $Et₂O$ (10 mL) at -40 °C was transferred via cannula into a solution of PPh₃ (0.097 g, 0.370 mmol) in Et₂O (10 mL) at -40 °C. Solvent was removed under vacuum, leaving a white solid. Yield: 0.350 g (83%). ³¹P{¹H} NMR (242 MHz, CD $_2$ Cl $_2$, 20 °C): δ 7.0 (s). 1 H NMR (600 MHz, CD $_2$ Cl $_2$, 20 °C): δ 8.28 (d, 1H, [HPPh₃]⁺, J_{PH} = 498 Hz), 7.6-8.0 (m, 15H, [HP*Ph₃*]), 7.55 (s, 4H, *p-CH,* [BAr^F₄]`), 7.73 (s, 8H, *o*-CH, [BArF 4] -).

Electrochemistry. Cyclic voltammetry experiments were carried out in a ca. 20-mL one-compartment glass cell. The working electrode was a glassy carbon disk (0.3 cm in diameter). The reference electrode for experiments conducted less than 0 °C was a pseudo-reference silver wire, for experiments > 0 °C, a Ag/AgCl electrode (ca. -0.50 V vs Fc/Fc⁺) was employed. The counter electrode was a Pt wire. The electrolyte was 0.1 M Bu₄NPF₆. The concentration of the organometallic complex was 1 mM.

Proton Reduction Catalysis Cyclic Voltammetry for [3(*t***-H)]BF₄. A at -**40 °C solution of **3** (7.5 mg, 0.007 mmol) in 6 mL CH2Cl2 was treated with aliquots (10 μL, 0.07 mmol) of a 0.691 M HBF₄ Et₂O solution in CH₂Cl₂. Cyclic voltammograms were collected at 50 mV/s.

Proton Reduction Catalysis Cyclic Voltammetry for [2(*t***-H)]BF4.** A -40 \degree C solution of 2 (7.5 mg, 0.007 mmol) in 6 mL CH₂Cl₂ was treated at -40 \degree C with aliquots (100 μL, 0.07 mmol) of a solution of 0.0691 M [HPMe₂Ph]BF₄ in CH₂Cl₂. Cyclic voltammograms were recorded at 50 mV/s.

2) Supplemental Figures

Figure S1. ¹H NMR spectra of a CD₂Cl₂ solution of 3 after protonation with $[H(Et_2O)_2]BAr_{4}$.

- a: The kinetically-favored terminal hydride (-75 °C, 600 MHz) showing [**3**(*t*-H)]BArF 4 as well as a small amount of the first isomer of the bridging hydride $(\delta -14.4)$
- b: After isomerizing to [$3(\mu$ -H)]BAr $^{\textsf{F}}{}_{4}$ upon warming to 25 °C (recorded at 500 MHz). The bridging hydride exists as two predominant isomers at δ - 14.5 (qd, Fe-H, $J_{PH1,2,3} \sim 20$ Hz, $J_{PH4} \sim 7$ Hz for the asymmetric (apical, basaldppv)(basal,basal-dppv) isomer) and at δ - 15.4 (tt, Fe-H, $J_{PH1,2} \sim 20$ Hz, $J_{PH3,4}$ ~ 7 Hz for the dissymmetric (apical,basal-dppv)₂ isomer.

Figure S2. FT-IR spectra (-40 °C, CH_2Cl_2) of **3** (blue) and $[3(t-H)]BF_4$ (red).

Figure S3. ${}^{31}P\{{}^{1}H\}$ NMR (242 MHz, CD₂Cl₂, -75 °C) spectra before (left) and after (right) treatment of solutions (CD2Cl2, -75 °C) of [**2**(*t*-H)]BAr^F 4 and [**3**(*t*-H)]BAr^F4 with ~100 equiv of Et₃N. Upon addition of NEt₃ to [**2**(*t*-H)]BAr^F4, resulting
³¹P NMR (upper left) shows complete conversion to **2**, whereas for [**3**(*t*-H)]BAr^F4, no change (lower left) is seen until warming near 0 °C (see Figure S4).

top: ~1 equiv of tetramethylguanidine,

 $middle: ~ 1$ equiv of PPh₃,

bottom: >100 equiv NEt₃.

The spectra show about 50% conversion to 3 (δ 90) and about 50% conversion to [**3**(μ-H)]BAr^F₄ (single isomer, δ 89, 88), regardless of the strength and amount of base.

Figure S5. $^{31}\text{P} \{ ^1\text{H} \}$ NMR (242 MHz, CD $_2\text{Cl}_2$, -60 °C) spectra of [**2**(*t*-H)]BAr^F₄ *top:* before, and

 $midlet$: after treatment with $~1$ equiv of $~PMe_2Ph$ (showing no reaction), then repeated by

bottom: treatment with \sim 1 equiv of PBu₃ showing complete conversion to 2 and some [HPBu₃]BAr^F₄ at δ 11 and PBu₃ at δ -33. Additions were conducted at -60 °C. In related experiments, CD₂Cl₂ (-80 °C) solutions of **1** and **3** were treated with [H(OEt₂)₂]BAr^F₄ (to give [$\mathbf{3}(t$ -H)]BAr^F₄ and [$\mathbf{1}(t$ -H)]BAr^F₄, respectively) followed by treatment with PPh₃, and then warming to room temperature. The sample of [**3**(*t*-H)]BAr^F 4 converted to a mixture of **3** and $[3(\mu - H)]$ BAr^F₄ (two isomers). The sample of $[3(\mu - H)]$ BAr^F₄ converted to $[1(\mu$ -H)]BAr^F₄ (two isomers).

 S

Figure S6. ¹H NMR (500 MHz, CD₂Cl₂) spectra (two views of the same spectrum) for solutions of [1(*t*-H)]BAr^F₄, generated at -35 °C, treated at that same temperature with a large excess of NEt₃ (δ 2.5, 1.0), followed by warming to 20 °C, whereupon the spectrum was recorded. The terminal hydride resonates at δ -3.5 (triplet) and the bridging hydride isomers at δ -14.5 and -15.7 (multiplets).

Figure S7. ¹H NMR (500 MHz, CD_2Cl_2) spectra of solutions of three μ -hydride compounds after treatment with large excess of NEt₃, after equilibration for 24 h at 20 °C. The high-field region (right) was magnified by 500x. top spectrum: $[1(\mu - H)]BAr$ ^{F₄,} *middle spectrum:* [**2**(μ-H)]BAr^F 4, *bottom spectrum:* [**3**(μ-H)]BAr^F 4.

Figure S8. ${}^{31}P\{{}^{1}H\}$ NMR (242 MHz, CD₂Cl₂, -80 °C) spectra of solutions of 2 before (top spectrum) and after (bottom spectrum) treatment with ~1 equiv of [HPPh3]BArF 4, showing complete conversion to [**2**(*t*-H)]BAr^F 4.

Figure S9. ³¹P NMR (242 MHz, CD_2Cl_2) spectrum of $[1(t-H)]BAr^F$ ₄ generated by protonation of **1** with $[H(Et_2O)_2]BAr^F_4$ at -80 °C.

Figure S10. ${}^{31}P\{{}^{1}H\}$ NMR (242 MHz, CD₂Cl₂) spectra of **3** (-90 °C) before (top) and after (-90 °C, middle) treatment with 1 equiv of [H(Et₂O)₂]BAr^F₄, showing complete conversion to [3(t-H)]BAr^F₄. Bottom: Reaction of 3 (-80 °C, CD₂Cl₂) with ~1.2 equiv [HPPh₃]BF₄, showing mostly unreacted 3 (the right spectrum shows the signals for $HPPh_3$ ⁺ as well as trace PPh_3 . The low field signal is slightly broadened due to the onset of decoalescence.

Figure S11. *In situ* ReactIR spectra of [**2**H]BArF 4 in MeOH (**a**, -40 °C, rough baseline arises in MeOH soln) showing *N*-protonated tautomer (1910, 1890 cm-1) and in CH₂Cl₂ (b, -40 °C) showing terminal hydride tautomer (1965, 1910 cm⁻¹).

Figure S12. In situ ReactIR spectra of [2H]BAr^F₄ (CD₂CI₂ solution) showing terminal hydride tautomer at -40 °C (1965, 1910 cm-1) titrated with increasing equivs of $[NBu_4]BF_4$. The growth of the ammonium tautomer (1965, 1910 cm⁻¹) upon addition of BF₄ is consistent with similar pKa's of the ammonium and the terminal hydride tautomers. The spectra are normalized with respect to the band near 1970 cm $^{-1}$.

Figure S13. Cyclic voltammagrams for $[2(t-H)]BF₄$ (left) and $[3(t-H)]BF₄$ (right) (-20 °C, 1 mM catalyst, ~1 mM ferrocene) with increasing amounts of [HPMe₂Ph]BF₄ and HBF₄ Et₂O, respectively. The presence of unprotonated 2 and 3 is seen at \sim -200 mV. The event at \sim -2 V for $[3(t-H)]BF_4$ is attributed to catalysis by $[3(\mu - H)]BF_4$.

Figure S14. Plot of $[H^+]^{1/2}$ (left) and $[H^+]$ (right) vs. current (i_c/i_p) for $[2(t-H)]BF_4$ (-20 °C, 1 mM catalyst, [HPMe2Ph]BF4). *i*c is the peak catalytic current, *i*p is the peak current in the absence of acid.

Figure S15. Plots of $[H^+]^{1/2}$ (left) and $[H^+]$ (right) vs. current (i_c/i_p) for [1(t-H)]BF₄ and [3(*t*-H)]BF₄ (-20 °C, 1 mM catalyst, HBF₄ Et₂O).

Figure S16. Plot of decay of terminal hydride $[3(t-H)]BAr^{F4}$ (-10 °C, CH₂Cl_{2,} soln.) as assayed by ¹H NMR spectra. The products are isomers of [3(μ -H)]BAr^F₄. Scale on left shows In(signal intensity) in arbitrary units.

3) Supporting References

- **1.** Barton, B. E.; Rauchfuss, T. B. *Inorg. Chem.* **2008**, *47*, 2261-2263.
- **2.** Song, L.-C.; Yang, Z.-Y; Bian, H.-Z.; Hu, Q.-M. *Organometallics*. **2004**, *23*, 3082-3084.
- **3.** Yakelis, N. A.; Bergman, R. G. *Organometallics*. **2005**, 3579-3581.