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1.)  Experimental Procedures

Manipulations were conducted using standard Schlenk techniques.
Solvents were filtered through activated alumina and subsequently degassed.  1H
and 31P NMR spectra were acquired on a Unity Varian 500 or a Unity Varian 600
spectrometer.  IR spectra were collected on a Mattson Infinity Gold FTIR
spectrometer.  Cis-1,2-bis(diphenylphosphino)ethylene (dppv) and HBF4

.Et2O
solution were purchased from Aldrich.  Fe2(S2C3H6)(CO)2(dppv)2 (1 ),1

Fe2[S2(CH2)2NH](CO)2(dppv)2 (2),1 Fe2(S2C2H4O)(CO)6 (3),
2 and [H(Et2O)2]BArF

4
3

were prepared according to literature procedures (BArF
4
- = B(C6H3-3,5-(CF3)2)4

-).

Fe2[(SCH2)2O](CO)4(dppv).  To a solution of 0.518 g (1.34 mmol)
Fe2(S2C2H4O)(CO)6 and 0.549 g (1.38 mmol) of dppv in 20 mL of MeCN was
added 0.100 g (0.133 mmol) of Me3NO in 5 mL of MeCN.  The solution
immediately darkened and over several hours thickened with a brown precipitate.
Solvent was removed in vacuo, the solid was dissolved in 5 mL of CH2Cl2, and
precipitated by addition of 40 mL of hexane.  This process was repeated twice to
give a fluffy golden powder of the crude compound that was sufficiently pure for
the next step.  Yield: 0.878 g (90%).  1H NMR (200 MHz, CD2Cl2, 20 °C):   ~8.0

(m, 4H, C2H2), ~7.5 – 7.2 (m, 20H, C2H2P), 3.86 (d, SCH2, JH,H = 9.6 Hz), 3.37 (d,
SCH2, JH,H = 8.4 Hz).  31P NMR (200 MHz, CD2Cl2, 20 ºC):  96.9 (s, dppv), 83.6

(s, dppv).  FT-IR (CH2Cl2): CO = 2026, 1955, 1918 cm-1.  FD-MS: m/z = 728.0

([Fe2[(SCH2)2O](CO)4(dppv)]+).

Fe2[(SCH2)2O](CO)2(dppv)2, (3). A solution of 0.266 g of
Fe2[(SCH2)2O](CO)4(dppv) (0.37 mmol) and 0.160 g of dppv (0.40 mmol) in 75

mL of toluene was photolyzed with a 100 W UV immersion lamp, max = 356 nm

(Spectroline), until the IR spectrum showed complete consumption of the starting
material (~20 hours).  The solution was dried in vacuo, redissolved in 5 mL of
CH2Cl2 and precipitated upon addition of 40 mL of hexanes.  This process was
repeated twice or until the filtrate was clear, yielding a dark green powder.  Yield:
0.201g (51.5%).  1H NMR (500 MHz, CD2Cl2, 20 ºC ):  8.02 (m, 4H, C2H2P), 7.9

– 7.1 (m, 40H, C2H2P), 2.86 (2, (SCH2)2O, 4H).  31P{1H} NMR (202 MHz, CD2Cl2,
20 ºC):  91.6 (s).  IR (CH2Cl2): CO = 1891, 1871 cm-1.  Anal. Calcd for

C56H48Fe2O3P4S2 (found): C, 62.94 (63.00); H, 4.53 (4.43).

[HFe2[(SCH2)2O](μ-CO)(dppv)2]BArF
4 , [3H]BArF

4.  In a J. Young NMR

tube CD2Cl2 was distilled onto Fe2[(SCH2)2O](CO)2(dppv)2 (7 mg , 0.007 mmol)
and [H(Et2O)2][BArF

4] (7 mg, 0.007 mmol).  The J. Young tube was then placed
directly into a -78 °C bath and analyzed with low temperature NMR spectroscopy.
High field 1H NMR (600 MHz, CD2Cl2, -40 °C):  - 2.7 (t, Fe-H, 2JPH = 72 Hz).
31P{1H} NMR (242 MHz, CD2Cl2, -40 °C):  99 (s), 94 (s), 89 (s), 69 (s). After

isomerization: 1H NMR (600 MHz, CD2Cl2, 25 °C):  - 14.5 (qd, Fe-H, JPH1,2,3 ~ 20

Hz, JPH4 ~ 7 Hz),  - 15.4 (tt, Fe-H, JPH1,2 ~ 20 Hz, JPH3,4 ~ 7 Hz).  31P{1H} NMR

(242 MHz, CD2Cl2, 25 °C):  89, 88; 86, 84, 83, 78.
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Isomerization of [3(t-H)]+ to [3(μ-H)]+.   In a J. Young NMR tube CD2Cl2
(0.7 mL) was distilled onto 3 (7 mg, 0.007 mmol), [H(Et2O)2]BArF

4 (7 mg, 0.007
mmol), and hexamethylbenzene (0.5 mg, 0.005 mmol).  The J. Young tube was
then placed into a -40 °C bath and analyzed with low temperature NMR
spectroscopy.  Data were collected as an array over 2 h showing nearly complete
consumption of 2H+ and growth of two isomers of 2μ+.  The terminal hydride

triplet at  -2.7 was integrated from each FID against the internal standard

hexamethylbenzene.  The isomerization of terminal hydride followed first order
kinetics (see figure S15).

Preparation of [HPPh3]BArF
4.  A solution of [H(Et2O)2][BArF

4] (0.385 g,
0.377 mmol) in Et2O (10 mL) at -40 °C was transferred via cannula into a solution
of PPh3 (0.097 g, 0.370 mmol) in Et2O (10 mL) at -40 °C.  Solvent was removed
under vacuum, leaving a white solid. Yield: 0.350 g (83%). 31P{1H} NMR (242
MHz, CD2Cl2, 20 °C):  7.0 (s). 1H NMR (600 MHz, CD2Cl2, 20 °C):  8.28 (d, 1H,

[HPPh3]
+, JPH = 498 Hz), 7.6-8.0 (m, 15H, [HPPh3]), 7.55 (s, 4H, p-CH, [BArF

4]
-),

7.73 (s, 8H, o-CH, [BArF
4]

-).

Electrochemistry.  Cyclic voltammetry experiments were carried out in a
ca. 20-mL one-compartment glass cell.  The working electrode was a glassy
carbon disk (0.3 cm in diameter).  The reference electrode for experiments
conducted less than 0 °C was a pseudo-reference silver wire, for experiments >
0 °C, a Ag/AgCl electrode (ca. -0.50 V vs Fc/Fc+) was employed.  The counter
electrode was a Pt wire.  The electrolyte was 0.1 M Bu4NPF6.  The concentration
of the organometallic complex was 1 mM.

Proton Reduction Catalysis Cyclic Voltammetry for [3(t-H)]BF4.  A at -
40 °C solution of 3 (7.5 mg, 0.007 mmol) in 6 mL CH2Cl2 was treated with
aliquots (10 μL, 0.07 mmol) of a 0.691 M HBF4

.Et2O solution in CH2Cl2.  Cyclic

voltammograms were collected at 50 mV/s.

Proton Reduction Catalysis Cyclic Voltammetry for [2(t-H)]BF4.  A -40
°C solution of 2 (7.5 mg, 0.007 mmol) in 6 mL CH2Cl2 was treated at -40 °C with
aliquots (100 μL, 0.07 mmol) of a solution of 0.0691 M [HPMe2Ph]BF4 in CH2Cl2.

Cyclic voltammograms were recorded at 50 mV/s.
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2)  Supplemental Figures

Figure S1. 1H NMR spectra of a CD2Cl2 solution of 3 after protonation with
[H(Et2O)2]BArF

4.
a:  The kinetically-favored terminal hydride (-75 °C, 600 MHz) showing

[3(t-H)]BArF
4 as well as a small amount of the first isomer of the bridging

hydride (  -14.4)

b:  After isomerizing to [3(μ-H)]BArF
4 upon warming to 25 °C (recorded at 500

MHz).  The bridging hydride exists as two predominant isomers at  - 14.5

(qd, Fe-H, JPH1,2,3 ~ 20 Hz, JPH4 ~ 7 Hz for the asymmetric (apical,basal-
dppv)(basal,basal-dppv) isomer) and at  - 15.4 (tt, Fe-H, JPH1,2 ~ 20 Hz,

JPH3,4 ~ 7 Hz for the dissymmetric (apical,basal-dppv)2 isomer.
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Figure S2. FT-IR spectra (-40 °C, CH2Cl2) of 3 (blue) and [3(t-H)]BF4 (red).
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Figure S3. 31P{1H} NMR (242 MHz, CD2Cl2, -75 °C) spectra before (left) and
after (right) treatment of solutions (CD2Cl2, -75 °C) of [2(t-H)]BArF

4 and [3(t-
H)]BArF

4 with ~100 equiv of Et3N.  Upon addition of NEt3 to [2(t-H)]BArF
4, resulting

31P NMR (upper left) shows complete conversion to 2, whereas for [3(t-H)]BArF
4,

no change (lower left) is seen until warming near 0 °C (see Figure S4).
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Figure S4.  31P{1H} NMR (242 MHz, CD2Cl2) spectra of solutions of [3(t-H)]BArF
4

treated with various bases (see below) at -97 °C, followed by warming to 20 °C,
at which temperature the spectrum was recorded:
top: ~1 equiv of tetramethylguanidine,
middle: ~ 1 equiv of PPh3,
bottom: >100 equiv NEt3.
The spectra show about 50% conversion to 3 (  90) and about 50% conversion

to [3(μ-H)]BArF
4 (single isomer,  89, 88), regardless of the strength and amount

of base.
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Figure S5. 31P{1H} NMR (242 MHz, CD2Cl2, -60 °C) spectra of [2(t-H)]BArF
4

top: before, and
middle: after treatment with ~1 equiv of PMe2Ph (showing no reaction), then

repeated by
bottom: treatment with ~ 1 equiv of PBu3 showing complete conversion to 2 and

some [HPBu3]BArF
4 at  11 and PBu3 at  -33.  Additions were conducted

at -60 °C.  In related experiments, CD2Cl2 (-80 °C) solutions of 1 and 3
were treated with [H(OEt2)2]BArF

4 (to give [3(t-H)]BArF
4 and [1(t-H)]BArF

4,
respectively) followed by treatment with PPh3, and then warming to room
temperature.  The sample of [3(t-H)]BArF

4 converted to a mixture of 3 and
[3(μ-H)]BArF

4 (two isomers).  The sample of [3(t-H)]BArF
4 converted to

[1(μ-H)]BArF
4 (two isomers).
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Figure S6. 1H NMR (500 MHz, CD2Cl2) spectra (two views of the same
spectrum) for solutions of [1(t-H)]BArF

4, generated at –35 °C, treated at that
same temperature with a large excess of NEt3 (  2.5, 1.0), followed by warming

to 20 °C, whereupon the spectrum was recorded.  The terminal hydride
resonates at  -3.5 (triplet) and the bridging hydride isomers at  -14.5 and -15.7

(multiplets).
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Figure S7.  1H NMR (500 MHz, CD2Cl2) spectra of solutions of three μ-hydride

compounds after treatment with large excess of NEt3, after equilibration for 24 h
at 20 °C.  The high-field region (right) was magnified by 500x.
top spectrum: [1(μ-H)]BArF

4,

middle spectrum: [2(μ-H)]BArF
4,

bottom spectrum: [3(μ-H)]BArF
4.
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Figure S8.  31P{1H} NMR (242 MHz, CD2Cl2, -80 °C) spectra of solutions of 2
before (top spectrum) and after (bottom spectrum) treatment with ~1 equiv of
[HPPh3]BArF

4, showing complete conversion to [2(t-H)]BArF
4.
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Figure S9.  31P NMR (242 MHz, CD2Cl2) spectrum of [1(t-H)]BArF
4 generated by

protonation of 1 with [H(Et2O)2]BArF
4 at -80 °C.
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Figure S10.  31P{1H} NMR (242 MHz, CD2Cl2) spectra of 3 (-90 °C) before (top)
and after (-90 °C, middle) treatment with 1 equiv of [H(Et2O)2]BArF

4, showing
complete conversion to [3(t-H)]BArF

4.  Bottom: Reaction of 3 (-80 °C, CD2Cl2)
with ~1.2 equiv [HPPh3]BF4, showing mostly unreacted 3 (the right spectrum
shows the signals for HPPh3

+ as well as trace PPh3.  The low field signal is
slightly broadened due to the onset of decoalescence.
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Figure S11.  In situ ReactIR spectra of [2H]BArF
4 in MeOH (a, -40 °C, rough

baseline arises in MeOH soln) showing N-protonated tautomer (1910, 1890 cm-1)
and in CH2Cl2 (b, -40 °C) showing terminal hydride tautomer (1965, 1910 cm-1).

(a)

(b)



S15

Figure S12.  In situ ReactIR spectra of [2H]BArF
4 (CD2Cl2 solution) showing

terminal hydride tautomer at -40 °C (1965, 1910 cm-1) titrated with increasing
equivs of [NBu4]BF4.  The growth of the ammonium tautomer (1965, 1910 cm-1)
upon addition of BF4

- is consistent with similar pKa’s of the ammonium and the
terminal hydride tautomers.  The spectra are normalized with respect to the band
near 1970 cm-1.
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Figure S13.  Cyclic voltammagrams for [2(t-H)]BF4) (left) and [3(t-H)]BF4 (right) (-
20 °C, 1 mM catalyst, ~1 mM ferrocene) with increasing amounts of
[HPMe2Ph]BF4 and HBF4

.Et2O, respectively.  The presence of unprotonated 2
and 3 is seen at ~-200 mV.  The event at ~-2 V for [3(t-H)]BF4 is attributed to
catalysis by [3(μ-H)]BF4.
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Figure S14.  Plot of [H+]1/2 (left) and [H+] (right) vs. current (ic/ip) for [2(t-H)]BF4  (-
20 °C, 1 mM catalyst, [HPMe2Ph]BF4).  ic is the peak catalytic current, ip is the
peak current in the absence of acid.
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Figure S15.  Plots of [H+]1/2 (left) and  [H+] (right) vs. current (ic/ip) for [1(t-H)]BF4

and [3(t-H)]BF4 (-20 °C, 1 mM catalyst, HBF4
.Et2O).
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Figure S16.  Plot of decay of terminal hydride [3(t-H)]BArF
4 (-10 °C, CH2Cl2,

soln.) as assayed by 1H NMR spectra.  The products are isomers of [3(μ-

H)]BArF
4.  Scale on left shows ln(signal intensity) in arbitrary units.
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