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Alejandro A. Schäffer and Yi-Kuo Yu

National Center for Biotechnology Information,

National Library of Medicine, National Institutes of Health

Bethesda, MD 20894

1To whom correspondence should be addressed. Email: altschul@ncbi.nlm.nih.gov



Supplemental Data A: The Model Description Length for Large n

An expression for the description length of the model, given in reference (30) of the main text,
is

DLn(M) =
k

2
log2

n

2π
+ log2

∫
Θ

√
|I(θ)|dθ.

The Fisher information of a multinomial model is I(θ) = 1/
∏k+1

i=1 θi, where θi represents one of
the k + 1 components of the vector θ. The range of integration Θ is the set of all probability
vectors. Observing that θk+1 = 1−

∑k
i=1 θk, we may write the integral as∫

Θ

√
|I(θ)|dθ =

∫
· · ·

∫
Pk

i=1 θi≤1;θi≥0

√
1

(1−
∑k

i=1 θi)
∏

i θi
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i=1

dθi .

With the substitution xi ≡
√

θi, the region of integration Θ is transformed to the intersection of
the unit sphere Sk with the set for which xi ≥ 0 for all i. Moreover, the integrand is transformed
to

2k
∏

i dxi√
1−

∑k
i=1 x2

i

,

which is symmetric under the transformation xi 7→ −xi for any i. Thus the integral can be
transformed to an integral over Sk.∫

Θ

√
|I(θ)|dθ =

∫
Sk

∏
i dxi√

1−
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i=1 x2
i

= Ωk

1∫
0

rk−1dr√
1− r2

,

where r2 ≡
∑

i x
2
i , and Ωk = 2πk/2/Γ(k

2 ) is the surface area of Sk. But

Ωk

1∫
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= Ωk

π/2∫
0

(sinφ)k−1 dφ

=
Ωk

2
2k−1 Γ(k/2)Γ(k/2)

Γ(k)
= πk/22k−1 Γ(k/2)

Γ(k)
,

and one may use the gamma function multiplication formula Γ(z)Γ(z + 1
2) =

√
πΓ(2z)21−2z to

conclude ∫
Θ

√
I(θ) dθ =

π(k+1)/2

Γ(k+1
2 )

=
Ωk+1

2
.

Stirling’s approximation Γ(x + 1) ≈
√

2πx xxe−x yields

log2 Γ
(

k + 1
2

)
≈ 1

2
+

1
2

log2 (π) +
k

2
log2

(
k − 1

2

)
− k

2
log2(e) +

1
2

log2(e) ,

1



so that
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Note that log2(1− x) = ln(1− x)/ ln(2) ≈ −x/ ln(2) = −x log2(e), giving

log2
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.

Adding this to k
2 log2

n
2π , we obtain

DLn(M) ≈ k

2
log2

ne

k
− 1

2
bits .

Supplemental Data B: Assumptions Used in the Text

In this section, we provide a more formal description of our use of the MDL principle to optimize
PSI-BLAST pseudocounts. We describe the approximations that are used in our calculations,
and the assumptions that we make to justify them, by relating the MDL principle to the Bayesian
approach to modeling a column in a multiple alignment.

The Bayesian approach begins with prior probability distribution w(θ) over all amino acid
frequency vectors. The probability for observing a set xn of amino acids is then given by

P (xn) =
∫
Θ

P (xn | θ) w(θ) dθ, 1

where Θ is the set of all frequency vectors, and θ ranges over Θ. The minimum description
length principle has connections to the Bayesian approach. It has been shown that if P (xn | θ)
is a multinomial, and w(θ) is proportional to the square root of the Fisher information, then
for large n the minimum combined description length of the model and the data approaches
− log2 P (xn) bits; see citation (30) of the main text for an overview of these results. The prior
distribution proportional to the square root of the Fisher information is known as Jeffrey’s prior.

Jeffrey’s prior is an uninformative prior. Its use indicates that one has no good prior in-
formation about the distribution of θ. To the contrary, the BLOSUM matrices were developed
by observing the amino acid substitution frequencies in alignments at a certain evolutionary
distance; in the case of BLOSUM-62, the frequencies among those sequences that align with less
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than 62% identity. By using the information inherent in BLOSUM-62 to calculate data depen-
dent pseudocounts, one may reduce the minimum description length of columns of biologically
accurate multiple alignments.

The use of pseudocounts comes at the cost of adding another parameter α to the model. The
number of bits used to encode α is thus part of the description length of the model. Traditionally,
PSI-BLAST has used the small integer m, rather than α, to specify the number of pseudocounts,
and we have not observed a need to specify the number of pseudocounts with high precision.
Thus we make the following simplifying assumption.

Assumption 1 In our calculations, the contribution of the parameter α to the description length
of the model may be safely ignored.

Information theory implies that if one encodes a column of amino acids with observed fre-
quency f using a code optimized for a column with frequency q, then the change in the description
length of the data approaches nD(f ||q) for large n. For large n, however, the MDL principle
suggests that the model may be described in fewer bits than would be required to encode q ex-
actly, and therefore there is an error implied in using nD(f ||q) as the change in the description
length of the data. It is shown at the end of this section that this error does not increase as n

grows if the following two assumptions hold.

Assumption 2 The frequencies f used in the computation of α are bounded away from zero.

Assumption 3 The pseudocount parameter, α converges to zero at a rate no slower that a
constant times 1/

√
n.

Assumption 2 holds because PSI-BLAST applies a fixed number of pseudocounts, thus bounding
each fi away from zero, before optimizing α. Assumption 3 holds if the number of pseudocounts
m is considered to be constant for large n, as is done in PSI-BLAST, or if m is allowed to grow
as n1/3, as is suggested by equation 9 of the main text.

A vector q of target frequencies is encoded using a deterministic rule that associates each
possible value of q with a vector g that can be represented exactly. Our calculations assume a
rule that does not depend on α. As α grows, fewer of the vectors g that may be represented
exactly are associated with a q in the image of Θ under M ′(α), which we denote Θα, than are
associated with a q in Θ. Thus, the description length of the model decreases with increasing
α.

Mathematically, for a given α, the model is encoded by the prior probability

wα(θ) ∝


√

I(θ) if θ ∈ Θα; and

0 otherwise,
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where I(θ) is the Fisher information. We assign zero probability to those θ outside of Θα

to indicate that, according to the model, those probabilities are not credible. The combined
description length of the data and model is

− log2

∫
Θα

P (xn | θ) wα(θ) dθ. 2

The description length of the model is the difference of 2 and the description length of the data,
nH(f) + nD(f ||q). By definition of wα(θ), the integral in 2 is

1∫
Θα

√
I(θ) dθ

∫
Θα

P (xn | θ)
√

I(θ) dθ. 3

If most of the mass of P (xn | θ)
√

I(θ) lies in Θα, the integral 3 may be approximated by

1∫
Θα

√
I(θ) dθ

∫
Θ

P (xn | θ)
√

I(θ) dθ, 4

were the limits of integration of P (xn | θ)
√

I(θ) have changed from Θα to Θ. But then we
may follow the derivation in reference (30) of the main text to find that the model length is
approximately

k

2
log2

n

2π
+

∫
Θα

√
I(θ) dθ

Thus, we make the following assumption

Assumption 4 The approximate change in the description length of the model for a fixed n,
as the pseudocount parameter α increases from β to γ, is

− log2

∫
Θγ

√
I(θ) dθ + log2

∫
Θβ

√
I(θ) dθ.

The Error in the Description Length of the Data

When we apply pseudocounts with pseudocount parameter α, we wish to model the data using
the target frequencies q, related to the observed frequencies f , by the formula

q = [αM + (1− α)I] f . 5

MDL theory suggests that the description length of the model should grow asymptotically as
19
2 log2(n) bits, and this is less than the 19 log2(n) bits that are required to describe exactly
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the observed counts of amino acids in n independent observations. Thus, when describing the
model, one may describe q only approximately.

Therefore, for target frequencies q, the description length of the data is approximately

nH(f) + nD(f ||g), 6

where g is one of the roughly n19/2 frequency vectors that may be used to describe the model.
The expression 6 is an approximation in the sense that the description length of any particular
encoding of the data is only approximated by a calculation using the relative entropy. The
expression is exact in that D(f ||g) is the correct relative entropy.

The density in Θ of the probability vectors g that may be represented exactly is a discretiza-
tion of Jeffrey’s prior. One may show that g may be chosen so that

max
i
|qi − gi| = O(1/

√
n).

The notationO(1/
√

n) indicates a function that converges to zero no more slowly than a constant
times 1/

√
n, as n tends to infinity.

Because one must use g rather than q to encode the data, there is an error in the estimate
nD(f ||q) of the description length of the data. Specifically,

nD(f ||g)− nD(f ||q) = n

20∑
i=1

fi log2(fi/gi)− n

20∑
i=1

fi log2(fi/qi)

= n
20∑
i=1

fi log2(gi/qi)

=
n

log2(e)

20∑
i=1

fi

qi
(gi − qi) + nO(1/n),

where we have used a first-order series expansion of log2(x) about qi.
For any nonzero fi,

fi

qi
=

fi∑20
j=1 ((1− α)δij + αmij) fj

= 1− α

(1− α)fi

20∑
j=1

mijfj +O
(

α2

(1− α)2f2
i

)
.

Because a small number of pseudocounts are applied to the observed frequencies before the
optimal pseudocounts are calculated, fi is bounded away from zero. Therefore, for small α,

fi

qi
= 1 +O(α).
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We therefore find that

nD(f ||g)− nD(f ||q) = nO(α)×O(1/
√

n) + nO(1/n).

So if the error in using nD(f ||q) as the change in the description length of the data is not to
grow with increasing n, then α must converge to zero at a rate of at least O(1/

√
n).

Supplemental Data C: D(f ||q) is nondecreasing in α

Let f and q be related by the formula 5, and let

r(α) = D(f ||q) =
20∑
i=1

fi log(fi/qi).

Assume fi > 0 for all i. The case in which some fi = 0 can be handled by omitting those terms
from the sum, as they do not contribute to r(α). We may write r′(α), the derivative of r(α)
with respect to α, as the sum

r′(α) = −
20∑
i=1

fi

∑20
j=1(Mij − δij)fj∑20

j=1(αMij + (1− α)δij)fj

= −
20∑
i=1

wi

1 + α(wi/fi)
,

where wi =
∑20

j=1(Mij − δij)fj . Note that

r′(0) = −
20∑
i=1

wi =
20∑
i=1

20∑
j=1

Mijfj −
20∑
i=1

fi = 0.

The second derivative of r(α) with respect to α,

r′′(α) =
20∑
i=1

w2
i /fi

(1 + α(wi/fi))2
,

is nonnegative for all α > 0. Therefore, r(α) is strictly increasing for α in 0 to 1, unless wi = 0
for all i, in which case r(α) is identically zero. However, if all wi are zero, then f = M f and the
frequencies f are exactly equal to background frequencies implicit in M .

Supplemental Data D: Small α limit

We wish to show that the approximate decrease in the model description length, given by the
difference

− log2

∫
Θα

√
I(θ) dθ + log2

∫
Θ0

√
I(θ) dθ, 7
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behaves as a constant times
√

α when α is small. Equivalently, we wish to show that the deriv-
ative of 7 with respect to γ ≡

√
α is finite and positive at γ = 0. By the rules of differentiation

of the logarithm, it suffices to show that

d

dγ

∫
Θα=γ2

√
I(θ) dθ

∣∣∣∣∣∣∣
γ=0

is finite and negative.
A point θ in Θα has 19 degrees of freedom, which may be represented by the 19 components

θi for i = 1, . . . 19. To simplify notation, we write θ20 = 1−
∑19

i=1 θi, but note that dθ =
∏19

i=1 dθi.

For each θ in Θ0, let

yi =
20∑

j=1

[(1− α)δij + αmij ]θj , 8

for i = 1, . . . , 19. These 19 equations define a differentiable path from each point θ in Θ0 to
a point y in Θα. As with θ, we simplify notation by writing y20 = 1 −

∑19
i=1 yi. Because the

columns of M must sum to one, it follows that

y20 =
20∑

j=1

[(1− α)δ20,j + αm20,j ]θj .

By the fundamental theorem of calculus

d

dγ

∫
Θα=γ2

√
I(θ) dθ

∣∣∣∣∣∣∣
γ=0

=
∮

∂Θ0

√
I(θ)

dy
dγ

· n̂ dS,

where n̂ indicates the outward facing normal to the surface ∂Θ0 at any value of θ. The surface
∂Θ0 may be divided into 20 pieces, which we denote Tk = {θ | θk = 0 and θ ∈ Θ0} for
k = 1, . . . , 20.

Let us consider the case of k = 1, which is notationally simplest. The cases of k = 2, . . . , 19
are similar. The case of k = 20 is treated separately below. On the surface T1,

n̂ dS = −ê1

19∏
j=2

dθj ,

where ê1 is a unit vector along the first coordinate. Recalling that α = γ2, one may differentiate 8
to find

dyi

dγ
= 2γ

20∑
j=2

(mij − δij)θj .
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Thus, near the surface of T1,

dy
dγ

· n̂ dS = −2γ

20∑
j=2

m1jθj

19∏
j=2

dθj .

If y is the image of a point θ on T1, then

√
I(y) = y

−1/2
1

20∏
i=2

y
−1/2
i = γ−1

 20∑
j=2

m1jθj

−1/2
20∏
i=2

y
−1/2
i .

The surface integral over T1 is

∫
T1

lim
γ→0

√
I(y)

dy
dγ

· n̂ dS = −2
∫
· · ·

∫
0≤θi≤1

 20∑
j=2

m1jθj

1/2
20∏
i=2

θ
−1/2
i

19∏
j=2

dθj . 9

The sum
∑20

j=2 m1jθj is strictly positive and bounded above by one. Thus the integrand in 9 is
strictly negative, and the surface integral over T1 is bounded below by

−2
∫
· · ·

∫
0≤θi≤1

∏19
i=2 θ

−1/2
i√

1−
∑19

i=2 θk

19∏
i=2

dθi.

This integral is recognizable as −2 times the integral of the square root of the Fisher information
for 18 parameters, which is known to be positive and finite. Therefore, the surface integral over
T1 is a finite, negative number. Similar arguments show that the surface integrals over Tk for
k = 2, . . . , 19 are finite negative numbers.

The surface T20 is the set of points for which
∑19

j=1 θj = 1. On this surface, the values of any
18 variables determine the value of the remaining variable. Therefore, we may parameterize T20

in terms of θj for j = 1, . . . , 18. With this parameterization

n̂ dS = ~e
18∏

j=1

dθj ,

where ~e is the vector of length
√

19 with every component equal to 1. Therefore, on T20,

dy
dγ

· n̂ dS = 2γ
19∑
i=1

19∑
j=1

(mij − δij)θj

18∏
j=1

dθj .

But
19∑
i=1

19∑
j=1

(mij − δij)θj = −1 +
19∑
i=1

19∑
j=1

mijθj = −
19∑

j=1

m20,jθj ,
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and so
dy
dγ

· n̂ dS = −2γ

19∑
j=1

m20,jθj .

The rest of the argument that the surface integral over T20 is negative and finite is symmetric
with the argument for T1.
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