

Supplemental Data Okuda et al., (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts.

Relative Signal (%)

Normalized and Shifted Melting Curves

psbE-1(64109)

Supplemental Figure 1. High resolution melting screen of *crr22* and *crr28* mutants. Real-time PCR was done using primers surrounding the 34 known editing sites of *Arabidopsis* in the presence of a fluorescent double-strand-specific dye. At the end of the amplification, amplicons were denatured, renatured and then melted using precise incremental increases in temperature. Melting of DNA duplexes releases the dye, causing a decrease in fluorescence. The presence of less thermostable heteroduplexes in a sample alters the shape of the melting curves. For each editing site, the melting curve of a control consisting of genomic DNA (g) from the wt sample was compared to the melting curves of a mix of genomic DNA and cDNA (gc) from the mutant lines. Editing produces cDNA with a nucleotide change and thus the mix of genomic DNA and cDNA exhibits a different melting curve from that of genomic DNA alone. If an editing site is unedited in the mutant, then the melting curves from the genomic DNA sample and the mixed genomic/cDNA sample are identical.

В

Supplemental Figure 2. Transcript profiles of genes with editing defects in *crr22* (A) and *crr28* (B). Ten μ g of RNA from 15-day-old seedlings (15 μ g for *rpoB*) was loaded on formaldehyde agarose gels and transferred onto a membrane. Hybridizations were performed under high-stringency conditions using antisense RNA probes for the genes specified for each blot. The arrows point at the mature transcript. The sizes of

Supplemental Figure 3. Partial sequence alignments of NdhB, NdhD, and RpoB around the amino acids affected by RNA editing. *Arabidopsis* NdhB, NdhD, and RpoB proteins were aligned with their homologues from other species. The alignment

Supplemental Figure 4. *In vivo* analysis of electron transport activity. (A) Light intensity dependence of ETR (electron transport rate). ETR is plotted relative to $\phi_{PSII} \times$ light intensity (µmol photons m⁻² s⁻¹), where ϕ_{PSII} is quantum yield of photosystem II (B) Light intensity dependence of NPQ (non-photochemical quenching) of chlorophyll fluorescence. All values represent the mean ±SD (n=3).

Supplemental Figure 5. Hierarchical clustering of *crr22* and *crr28* mutants based on their plastid RNA profiles assessed by quantitative RT-PCR. The tree was calculated using the euclidian distance based on log₂ (mutant/WT) ratios for all plastid transcripts. *clb19* (Chateigner-Boutin et al., 2008) and *ptac2* (Pfalz et al., 2006) are impaired in PEP activity and *otp51* (de Longevialle et al., 2008) shows a specific *ycf3* splicing defect.

Supplemental Figure 6. Protein blot analysis of the plastid-encoded RNA

polymerase (PEP). Immunodetection was performed using antibodies against the PEP subunit, RpoA. Proteins were extracted from the stroma fraction. The lanes were loaded with protein samples corresponding to $1.0 \ \mu g$ chlorophyll for RpoA (100%) and the series of dilutions indicated. The Coomassie Brilliant Blue stained gel lanes are shown as loading controls.

Supplemental Figure 7. Patterns of *rps7-ndhB*, *psaC-ndhD*, and *rpoB* transcripts.

Total RNA (5 µg) isolated from leaves of 4-week-old *crr22-1*, *crr22-1*+*CRR22DYW2*, *crr28-1*, and *crr28-1*+*CRR28DYW2* were analyzed by RNA gel blot hybridization. The arrows point at the mature transcript. The positions of RNA size markers are indicated at left. *crr22-1*+*CRR22DYW2*, *crr22-1* transformed with CRR22, in which the DYW motif was replaced by that of CRR2; *crr28-1*+*CRR28DYW2*, *crr28-1* transformed with CRR28, in which the DYW motif was replaced by that of CRR2; *crr28-1*+*CRR28DYW2*, *crr28-1* transformed with CRR28.

Supplemental Figure 8. Purified recombinant proteins used in this study. All proteins were expressed as native forms. The proteins were purified and analyzed by SDS-PAGE (10-20% gradient gel) and Coomassie Brilliant Blue. Three hundred nanograms of protein were loaded in each lane.

Supplemental Figure 9. Comparison of the nucleotide sequences in the regions surrounding the editing sites affected in *crr22* **and** *crr28***. (A)** Sequence alignment of the region surrounding ndhB-7, ndhD-5, and rpoB-3 editing sites. The alignment includes the sequence from -40 to +10 around the edited C (bold letter) with identical nucleotides shown by boxes. **(B)** Sequence alignment of the region surrounding ndhB-2, and ndhD-3 editing sites. The alignment includes the sequence from -30 to +10 around the edited C (bold letter) with identical nucleotides shown by boxes.

	clb19 com	crr21	WT	ptac2	clb19	crr2	crr28	crr22	crr4
psbA	-0.38125	-0.14705	0	-3.8779	-4.57567	-0.67397	-0.41997	-0.71136	-0.81133
, matK	0.671019	0.08202	0	0.124091	0.553087	0.25415	0.339983	-0.2641	1.484087
rpS12A	0.074942	-0.28521	0	-0.94179	-0.2215	-0.4532	-0.2632	0.198711	0.645355
, psbK	0.427897	-0.24209	0	-1.65544	-1.58963	0.132385	0.056378	0.333913	-0.12488
psbl	-0.32925	-0.2343	0	-1.66793	-1.46278	0.272833	0.186379	-0.03754	-0.25542
atpA	-0.09327	-0.14593	0	0	-0.04168	0.071723	0.413949	0.102194	-0.30753
atpF	0.181563	-0.2213	0	-0.89919	-0.8319	0.074549	0.283737	0.166897	-0.13843
atpH	0.509303	0.093735	0	-0.53696	-0.43326	0.188153	0.147679	-0.01748	-0.03118
atpl	0.296769	0.21967	0	-0.05971	0.112962	-0.04439	0.176054	0	-0.14002
rpS2	-0.00512	0.411275	0	1.7392	2.3521	0.080286	0.368717	-0.02673	0.011362
rpoC2	0.071436	0.762842	0	2.246464	2.943508	0.470615	0.5924	0.103809	0.757141
rpoC1	-0.30467	0.107867	0	2.386763	3.111502	0.075775	0.099081	0.401907	-0.35292
rpoB	0.037081	0.309326	0	1.561543	2.329089	-0.0091	0.179285	-0.00344	0.290118
petN	-0.14873	-0.49599	0	-1.40701	-1.06757	-0.24438	-0.4855	-0.47037	-0.41972
psbM	0.221208	-0.72134	0	-1.31095	-1.82626	-0.13643	-0.24209	-0.40592	-0.63194
psbD	-0.08933	-0.00493	0	-1.40386	-2.22861	-0.27958	0.012537	-0.17239	-1.25433
psbC	-0.17308	0.171566	0	-1.7116	-4.60719	0.015179	-0.12805	0.01859	-0.67392
psbZ	-0.04097	-0.30711	0	-2.12995	-3.0276	0.014008	0	-0.1392	-0.3782
rps14	-0.19901	0.15104	0	0.26234	-0.44375	0.301574	0.037828	-0.20308	-0.04386
psaB	0.1589	0.302381	0	-1.73207	-1.52257	0.223282	0.328701	0.415821	-0.47759
psaA	0.083826	0.563788	0	-1.85385	-1.81324	0.251565	0.365921	0.486458	-0.56606
ycf3	-0.05335	0.008775	0	-0.95562	0.377306	-0.04325	1.052007	-0.42267	1.208809
rps4	0.152839	0.011478	0	1.101467	1.596025	-0.00514	0.32226	-0.22848	0.411232
ndhJ	-0.43084	-0.74484	0	0.605819	0.092139	-0.06037	0.083444	0.120421	-0.3152
ndhK	-0.23067	-0.56226	0	0.446139	0	-0.00917	0.10537	0.210195	-0.31027
ndhC	-0.30827	-0.39026	0	0.346067	0.017382	0.168074	0.379449	0.128164	-0.07792
atpE	-0.10356	-0.37714	0	0.44481	0.76751	-0.14723	-0.15808	-0.31277	0.166729
atpB	-0.00753	-0.22791	0	0.419167	0.55861	-0.03307	-0.09224	-0.17452	0.210903
rbcL	0.265241	-0.06364	0	-3.09319	-2.98438	0.038422	0.05315	-0.18225	0.095623
accD	0.419467	0.93634	0	1.773232	1.403921	-0.0981	0.180863	0.367384	0.255014
psal	0.182635	-0.22337	0	-0.22	-0.02555	-0.00911	0.095467	0.033771	-0.5321
ycf4	0.324215	0.067878	0	0.160222	0.434774	0.075215	0.337705	0.285886	-0.20653
cemA	0.308141	-0.04881	0	0.245092	0.190068	-0.06729	0.544942	0.231123	-0.16338
petA	0.093455	0.087155	0	0.236524	0.129564	-0.16575	0.274886	0.120332	0.18341
psbJ	-0.05824	0.180033	0	-0.31487	-0.43318	0	-0.22618	-0.51979	0.119915
psbL	0.098901	-0.27597	0	-1.89654	-2.20932	-0.25733	-0.66073	-0.24499	-0.26296
psbF	0.108163	-0.28141	0	-2.02175	-2.28457	-0.30071	-0.47084	-0.13086	-0.01192
psbE	0.014451	-0.05347	0	-2.73972	-2.81749	-0.03415	-0.52213	-0.20322	-0.08725
petl	-0.14677	-0.19595	0	-0.42739	-0.59631	-0.40411	-0.44525	-0.15135	0.239166
petG	-0.89175	-0.2404	0	-0.64021	-0.61463	-0.34444	-0.36815	-0.18852	0.219649
psaJ	0.222831	-0.10214	0	-1.86917	-1.96043	0.041747	-0.16982	-0.50234	0.41297
rpL33	0.251907	0.000983	0	2.126871	1.799208	-0.37604	0.2385	-0.2442	-1.5403
rpS18	-0.00039	0.007525	0	2.620379	2.664124	-0.23754	-0.05371	0.000145	-0.76698
rpL20	-0.27397	-0.04246	0	2.303254	2.710002	-0.07961	-0.03773	0.165935	-0.22051
clpP1	0	0.195672	0	0.47484	1.427224	-0.42206	-0.10212	0.463934	0.061215
psbB	0.263667	0.063854	0	-1.79702	-1.60573	0.010932	-0.19152	-0.13256	-0.26908
psbT	0.165803	0.143095	0	-1.52063	-1.6223	0.294348	0.159697	0.016366	-0.266
psbN	-0.4514	0.156777	0	-3.21194	-3.34212	-0.16796	-0.08396	-0.45128	-0.53972
psbH	0.396272	0.03559	0	-2.68629	-2.70398	0.057436	0.169413	0.107329	-0.12235
petB	0.287102	-0.01252	0	-1.30776	-1.41211	-0.31248	-0.15551	-0.22931	-0.36083
petD	0.081309	-0.04154	0	-1.99376	-1.80762	-0.15841	-0.11159	-0.39164	-0.23071
rpoA	0.335677	0.399541	0	1.531229	2.027805	0.246353	-0.07601	0.293778	0.180423
rpS11	0.22911	0.279179	0	1.588512	2.131779	0.216992	0.006112	0.206499	0.248139
rpL36	0.121849	0.195948	0	1.704809	2.041811	0.374138	-0.03358	0.133785	0.267518
rpS8	0.142118	0.34107	0	1.50758	1.981663	0.413704	-0.12018	0.174237	0.415669
rpL14	0.439935	0.183462	0	1.461706	1.769387	0.43001	-0.05975	0.061445	0.516808
rpL16	0.056062	0.291559	0	1.320629	1.762046	0.33362	-0.16031	0.062178	0.73677

Supplemental Table 1. Comparison of chloroplastic transcripts abundance

rpS3	0.291576	0.389402	0	1.278306	1.795297	0.486295	0.026474	0.023691	0.807895
rpL22	0.491369	0.184881	0	1.5842	1.630596	0.286208	0.339009	0.023903	1.16045
rpS19	-0.08635	0.154861	0	0.99929	1.556277	0.1142	0.004283	-0.12605	1.062649
rpL2	0.314834	-0.33038	0	0.529462	0.804339	0.08583	-0.23603	0.009119	0.334961
rpL23	0.269965	0.021103	0	0.578327	0.708685	0.292943	-0.03088	0.128508	0.392572
ycf2.1	-0.16834	0.12604	0	1.699755	1.587179	0.127957	0.244022	0.229436	0.881938
ycf15	-0.29407	0.11647	0	1.49369	1.69659	0.310014	0.07626	-0.02416	1.248631
ndhB	0.003708	-0.39523	0	1.098768	0.437822	-0.65445	-0.09221	0.087187	0.465247
rpS7	-0.02688	0.061374	0	1.211729	1.279704	-0.37696	-0.09157	0.32785	0.237227
ycf1	0.163605	-0.26711	0	1.341033	0.764235	0.327667	0.360155	0.361365	0.522341
ndhF	-0.13706	0.189725	0	0.264457	-0.20554	0.341312	0.468212	0.676297	0.190206
rpL32	0.342982	-0.50708	0	1.212828	1.541495	-0.20337	-0.46186	0.069544	0.128561
ccsA	0.033335	0	0	1.654077	1.518438	0.294156	-0.28024	-0.23497	0.238918
ndhD	0.215151	0.206616	0	0.883917	1.037706	0.653851	0.534861	-0.18681	0.353621
psaC	-0.03317	-0.45609	0	-0.25472	-0.76016	0.368134	-0.02835	-0.0211	0
ndhE	-0.12823	-0.32127	0	-0.75745	-1.13218	-0.06022	0.377882	0.03196	0.02767
ndhG	-0.23877	-0.02818	0	-0.15552	-0.67299	0.101225	0.472589	0.233858	0.065162
ndhl	-0.02907	0.084631	0	0.101314	-0.31914	-0.10346	0.602739	0.22511	-0.13776
ndhA	-0.21574	0.138724	0	-2.74413	-4.92625	0.206829	0.393505	0.124265	-0.00708
ndhH	-0.24999	0.22468	0	2.165984	1.755051	-0.02338	0.551369	0.15399	-0.10225
rpS15	-0.19019	0.11887	0	2.270055	2.571506	-0.00273	-0.06427	-0.19332	0.81204
18S	-0.22976	-0.59274	0	-0.25311	-0.01346	-0.44106	-0.33605	-0.84764	-0.37712
QC16S	-0.47486	-0.25898	0	-2.6706	-3.10477	-0.22244	-0.3217	-0.4965	-0.30674
QC23S	-0.43732	-0.28219	0	-2.1595	-1.22693	0.011775	-0.46911	-0.11401	1.385455

Supplemental Table 2. Oligonucleotide primers used

name	sequence				
For generating PCR templates for PPE assay					
ndhDATfor:	CAAGCCTAATTCTATCATAACTCG				
ndhDATrev:	AAGTTTATATGGTTCGAACG				
ndhBedIII:	ATTTCTTGAAGCTCAATCTCTCCCCCGGAT				
ndhBfor2:	TCATGATCTGGCATGTACAG				
Nb11:	TTCATGCTTGTTTGAGTAATAGC				
p12.AT:	GATCTAATGAGGCTACTATG				
rpoBATfor:	GAAAACCAGTAGGAATATGC				
rpoBATrev:	GTCTCCAATTAATATTTCGGCG				
For PPE assay					
ndhD(116290)_PPE_C:	AGTCGGTACAATCCAAATAATTTATGCAGC				
ndhD(116281)_PPE_A:	GCTATTCTCTTTTTTAAATTACGTTGA				
ndhB(96998)_PPE_C:	CTAACGATTTAATAACTATCTTTGTAGCTC				
ndhB(96419)_PPE_C:	AGGAATTGGGTTCAAGCTTTCCCTAGCCCC				
rpoB(25779)_PPE_C:	GTAGGAAACAAAAATATCTATTCTAGTTC				
For HRM analysis					
matK_HRM_for:	IGAAICCAAGAITTTTCTIGTICTT				
matK_HRM_rev:	AAAAAGATGGATTCGTATTCACA				
atpF_HRM_for:	GCCGGGAGTTTCGGATTTA				
atpF_HRM_rev:	GATCAATACACCGAAAACTACACTT				
rpoC1_HRM_F:	TTCTTTTGCTAGGCCCATAA				
rpoC1_HRM_R:	TGCTGTATTTCCAGGATTGAA				
rpoB23898_HRM_for:	TGGTTCAAGTTATAACCCAGAAAT				
rpoB23898_HRM_rev:	CCATGTCTTCCAGCTACTTTATCA				
rpoB25779_HRM_for:	GCTCGGGTGAGTAGGAAACA				
rpoB25779_HRM_rev:	TCTAGAATTTCTCGTAGATTCAAACC				
rpoB25992_HRM_for:	TCCTTTAATGAATTCCCTTGGA				
rpoB25992_HRM_rev:	CGGGACTTTGCAATATTTGAT				
psbZ_HRM_for:	TGCTTTCCAATTGGCAGTTT				
psbZ_HRM_rev:	GAGACGCAAATACAACGGGTA				
RPS14(37092)HRM_for:	TCGCTAAGTGAGAAATGGAAAA				

RPS14(37092)HRM_rev: CGTCGATGAAGACGTGTAGG RPS14(37161)HRM_for: GAAGAAGAGGCAAAAATTGGAA TTCTCACTTAGCGACGGAATC RPS14(37161)HRM_rev: TGAATGTTTGTGAACAATGTGG accD_HRMfor: GATTCCAAGTACCCGGATCA accD_HRMrev: accD(58642)HRM_rev: ACTTTTTAGCTTGTTGATAGAGGTTT accD(58642)HRM_for: GCATTTTTCTTTCAAATCATTTTT TCGTTGGATGAACTGCATTG psbF_HRM_rev: GGCTGTTCATGGACTAGCTGTA psbF_HRM_for: TGGGTCCTCCTAAAAAGATCTAC psbE_HRM_rev: AAGGCATTCCATTAATAACAGG psbE_HRM_for: petL_HRM_for: ATTTTATTGAGTCCCTTCATGC petL_HRM_rev: AAAGCTGCTAGTAGAAAACCGAAA TCGAGTTCGTCCATTCTATTTT Rps12_HRM_rev: AGACTGAGACATAAAAAGGAAATTCT Rps12_HRM_for: clpPAt2rev: TGAACCGCTACAAGATCAAC GAAGACATGGAACGGGATGT clpP_HRM70for: TTGGCGAAATAGAAGGAACA rpoA_HRMfor: CCTGCTATGTTAGAATAGTCATGTGG rpoA_HRMrev: Rpl23_HRM_r: GAAGAGTTCGACCCAATGCT Rpl23_HRM_f: TCAATATACTTTTAATGTCGAATCAGG ndhB(94999)HRM_for: TTCCATCGAATTGAGTATGATTG ndhB(94999)HRM_rev: AATCGCAATAATCGGGTTCA GGTCTTCCTCCACTAGCAGGT ndhB95225_HRM_for: CTGCCATCCACACCAGAATA ndhB95225_HRM_rev: 95640R: CACTCGAATTTTCGATATTCCTTT ndhB(95608)HRM_rev: TCCAGAAGAAGATGCCATTCA AAGGAATATCGAAAATTCGAGTGG 95618F: CCAGTCGTTGCTTTTCTTCTG 95693R: 95627F: CGAAAATTCGAGTGGCTGA 95698R: CCACTCCAGTCGTTGCTTTT TCATCACTGTAGGAATTGGGTTC 96461R: ndhB(96419)HRM_rev: CTTCGTATACGTCAGGAGTCCA 96606R: GGTGGGGCAAGCTCTTCTAT CAATCTCTCCCCCGGATG 96537F: ndhB(96698)HRM_for: TTTTTATGTGGTGCTAACGATTT

ndhB(96698)HRM_rev: CCAGATAATAGGTAGGAGCATAAACTG ndhB(97016)HRM for: TTGGCCTAATTCTTCTTGATG ndhB(97016)HRM_rev: TTGAAGAGATGAAATATAACCAAGG TTCGGTTACTTTATCGATCCAC ndhF(112349)HRM_for: ndhF(112349)HRM_rev: TCAGAACCAAAATCCCAACAG 116318R: GGTACAATCCAAATAATTTATGCAG 116228F : CCATATGAGATACAGAAGAATAGGC ndhD(116494)HRM_for: TTGGATTTCTTATTGCTTTTGC ndhD(116494)HRM_rev: CACCGTGGGTGTCAGGTAAC AGCAATGTACAGCGGTCAAA ndhD(116785)HRM_for: ndhD(116785)HRM_rev: TTCTAATTCCCACATGATGAAAAA ndhD(117166)HRM_for: TTGGACCTGGTGTATCTTGTC CCAGCAGATATTGGAAAAACAA ndhD(117166)HRM_rev: ndhG_HRMfor: TTGCCTGGACCAATACATGA CACTCCCAGACCCCCTACTA ndhG_HRMrev:

For analysis of RNA editing in transgenic plants

ndhB-FW:	TGCTTCTCTTCGATGGAAG
ndhB-RV:	TCCTTCGTATACGTCAGG
ndhB-FW2:	TCCCACTCCAGTCGTTG
ndhB-RV2:	TGAGCAATCGCAATAATCG
ndhD-FW:	AGTACGCGTTCTTTGGAC
ndhD-RV:	TAGCTCCATTAAGTCCAGG
rpoB-FW:	TCAATTGGTAGAACCTCTG
rpoB-RV:	TATTTCGGCGACCAATCC

For RNA gel blot analysis

ndhB-exon-FW:	TCTCCCACTCCAGTCGTTG
ndhB-exon-RV:	TGAGCAATCGCAATAATCGG
ndhD-FW:	TTCTTCTAACGACCTACGC
ndhD-RV:	TAATCGGTGATTTGACGGC
rpoB-FW:	AGGGAACATCTGCAATACC
rpoB-RV:	CTCCTTATCGGTCAAGAAAG

For construction of pT-DYW2 and pT-DYW22

CRR2_H4-F: GGGAGATCTCTTGGTTCTTGTAGAATTCACGG

CRR2_F-R:GGGGTCGACCCAGTAATCTCCACAAGAACACDYW22-OX-FW:GAAGCTGGTTATGTTCCTGDYW22-OX-RV:CCAGTAATCTCCGCACG

Preparation of template DNA for in vitro transcription

 NB2-F:
 ATGTAATACGACTCACTATAGGGGTTATATTTCATCTCTTCAA

 CAAG

 NB2-R:
 CCCATAGGGGCATAAACTGAAACATTCTGGAGC

Supplemental Methods

Chlorophyll Fluorescence Analysis

Chlorophyll fluorescence was measured with a MINI-PAM portable chlorophyll fluorometer (Walz, Effeltrich, Germany) in ambient air at room temperature (25°C). Minimum fluorescence at open PSII centers in the dark-adapted state (*Fo*) was excited by a weak measuring light (wavelength 650 nm) at a PFD of 0.05-0.1 µmol m⁻² s⁻¹. A saturating pulse of white light (800 ms, 3,000 µmol photons m⁻² s⁻¹) was applied to determine the maximum fluorescence at closed PSII centers in the dark-adapted state (*Fm*) and during AL illumination (*Fm'*). The steady state fluorescence level (*Fs*) was recorded during AL illumination (15-1,000 µmol photons m⁻² s⁻¹). These photosynthetic parameters were determined 2 min after the change of AL intensity. NPQ was calculated as (*Fm-Fm'*)/*Fm'*. The quantum yield of PSII (ϕ_{PSII}) was calculated as (*Fm'-Fs*)/*Fm'* (Genty et al., 1989). ETR was calculated as ϕ_{PSII} xPFD. The transient increase in chlorophyll fluorescence after AL had been turned off was monitored as described (Shikanai et al., 1998).

RNA preparation and RNA gel blot analysis

For Supplemental Figure 2, RNA preparation and RNA gel blot were performed as follows. Total RNA was isolated using a plant RNeasy kit (Qiagen, Valencia, CA). Ten micrograms of RNA (15 micrograms for rpoB) was loaded on formaldehyde agarose gels and transferred onto Hybond N+ nylon membrane (GE Healthcare, Piscataway, NJ). RNA integrity, loading and transfer were checked by staining the membrane with methylene blue. Hybridizations were performed under high-stringency conditions using antisense RNA probes internally labeled with biotinylated cytidine. The probes were synthesised by cloning PCR products in pGEM-T Easy vector (Promega, Madison, WI). The primers used for the PCR were rpoB.AT.for (GAAAACCAGTAGGAATATGC) and rpoB.AT.rev (GTCTCCAATTAATATTTCGGCG), ndhB.AT.rev2 (CTAAAAAAGGGTATCCTGAGC) and AndhB (GTCGTTGCTTTCTTCTG) corresponding to the 2nd exon of *ndhB*, and chloro 213 F (AATAGTATTTCAAGTGTAACAGGATAGGA) and chloro 213R (TGGACGATCCATTAATTCAACT) for ndhD. Clones with inserts in antisense orientation were amplified by PCR using the forward primer and M13/pUC reverse (GAGCGGATAACAATTTCACACAGG). The PCR products served as a template for in vitro transcription with SP6 polymerase following the manufacturer's recommendations (Maxiscript Ambion). Signal detection was performed using the

Phototope Star detection kit (New England Biolabs, Ipswich, MA) and read in a LAS-1000 (FujiFilm). The arrows point at the mature transcript. Sizes of RNA markers (Promega) are shown in kilobases.

For Supplemental Figure 7, the fragments used as probes were obtained by PCR amplification using the oligonucleotides 5'-TCTCCCACTCCAGTCGTTG-3' and 5-TGAGCAATCGCAATAATCGG-3' for *ndhB* and the oligonucleotides 5'-TTCTTCTAACGACCTACGC-3' and 5'-TAATCGGTGATTTGACGGC-3' for *ndhD*. Labeling of the probe was carried out by using a PCR DIG Probe Synthesis Kit (Roche, Indianapolis, IN). Total RNA was isolated from the leaves of 4-week-old plants by using an RNeasy Plant Mini Kit (Qiagen) and treated with DNase I (Invitrogen, Carlsbad, CA). Total RNA (5 μg) was then loaded onto a 1% agarose gel containing 0.6 M formaldehyde and electrophoresed in 1xMops buffer (pH 7.0) comprising 20 mM Mops, 5 mM sodium acetate, and 2 mM EDTA. After electrophoresis, the RNA was transferred onto a nylon membrane and hybridized with DIG-labeled DNA probe. The signals from the hybridized bands were detected by using a Gene Image CDP-Star Detection Kit (GE Healthcare).

Analysis of chloroplast transcripts and clustering

Chloroplast transcript accumulation was analysed as described (Chateigner-Boutin et al., 2008). The profiles corresponding to the various samples analysed (see Supplemental Table 2) were clustered with Avadis Prophetic 4.3 (Strand Life Sciences) using the log₂ value of the mutant/WT ratios after normalization by setting the median of the ratios to 0 for each sample. The euclidian distances between the samples were then calculated and the dendrogram was drawn by hierarchical clustering using the complete linkage rule (D'haeseleer, 2005).

Constructs and Plant Transformation

For complementation of the *crr22* and *crr28* mutations, the wild-type genomic sequence delimited by 5'-CCTCCAATTCTTGCGTTTG-3' and 5'-TCACCAGTAATCTCCGCAC-3' including the *CRR22* coding region and by 5'-GAGAAGGACTTGATGAGG-3' and 5'-CTACCAGTAGTCTAAACAAG-3' including the *CRR28* coding region were cloned into pGWB-NB1 binary vector. The resultant plasmids were introduced into *crr22-1* and *crr28-1* via *Agrobacterium tumefaciens* ASE.

For the expression of CRR2, CRR22, and CRR28 lacking their DYW motifs to be deleted, the wild-type genomic sequences surrounded by 5'-

TCTCCATGAAAGCCATCC -3' and 5'-CAATCGGCTTCTATACTTC-3' for CRR2, 5'- CCTCCAATTCTTGCGTTTG -3' and 5'-TTTGATGTGGCATATCAGCTTC-3' for CRR22, and by 5'- GGAGAAGGACTTGATGAGG -3' and

5'-TCTTAGCCTGTCGTCGATC-3' for CRR28 were cloned into the pGWEB-NB1 binary vector fusing the HA-tag at the C-terminus. The resultant plasmids were introduced into *crr2-1*, *crr22-1*, and *crr28-1* via *Agrobacterium tumefaciens* ASE.

For the expression of CRR22 and CRR28 lacking their E and DYW motifs, the wild-type genomic sequences delimited by 5'- CCTCCAATTCTTGCGTTTG -3' and 5'-CAATCTCTGCTGCTTCC-3' for *CRR22* and by 5'-

GAGAAGGACTTGATGAGG -3' and 5'-AATATTTCTAGCAATTTCTTCAC-3' for *CRR28* were cloned into the pGWEB-NB1 binary vector fusing the HA-tag at the C-terminus. The resultant plasmids were introduced into *crr22-1* and *crr28-1* via *Agrobacterium tumefaciens* ASE.

For the expression of CRR2, in which the DYW motif of CRR2 is replaced by that of CRR22 or CRR28, the wild-type genomic sequence delimited by 5'-TCTCCATGAAAGCCATCC-3' and 5'-CTTCATATCTTCGGCTAAC-3' was amplified by PCR and was ligated to the sequence encoding the DYW motif of CRR22 delimited by 5'-GAAGCTGGTTATGTTCCTG-3' and 5'- CCAGTAATCTCCGCACG -3' or the sequence encoding the DYW motif of CRR28 delimited by 5'-TCAATTGGTTATTTACCGGATG-3' and 5'- CCAGTAGTCTAAACAAGAGC-3'. The resultant chimeric genes were cloned into the pBIN19 binary vector fusing the HA-tag at the C-terminus. The resultant plasmids were introduced into *crr2-1* via *Agrobacterium tumefaciens* MP90.

For the expression of CRR22, in which the DYW motif of CRR22 is replaced by that of CRR2 or CRR28, the wild-type genomic sequence delimited by 5'-CCTCCAATTCTTGCGTTTG -3' and 5'- TTTGATGTGGCATATCAGCTTC -3' was amplified by PCR and was ligated to the sequence encoding the DYW motif of CRR2 delimited by 5'-GAGAAAGGGTACATACCAC-3' and

5'-CCAGTAATCTCCACAAGAAC-3' or the sequence encoding the DYW motif of CRR28 delimited by 5'- TCAATTGGTTATTTACCGGATG -3' and 5'-

CCAGTAGTCTAAACAAGAGC -3'. The resultant chimeric genes were cloned into the pGWB-NB1 binary vector fusing the HA-tag at the C-terminus. The resultant plasmids were introduced into *crr22-1* via *Agrobacterium tumefaciens* ASE.

For the expression of CRR28, in which the DYW motif of CRR28 is replaced by that of CRR2 or CRR22, the wild-type genomic sequence surrounded by 5'-GGAGAAGGACTTGATGAGG -3' and 5'- TCTTAGCCTGTCGTCGATC -3' was amplified by PCR and was ligated to the sequence encoding the DYW motif of CRR2 delimited by 5'- GAGAAAGGGTACATACCAC -3' and 5'-CCAGTAATCTCCACAAGAAC -3' or the sequence encoding the DYW motif of CRR22 surrounded by 5'- GAAGCTGGTTATGTTCCTG-3' and 5'-CCAGTAATCTCCGCACG -3'. The resultant chimeric genes were finally cloned into the pGWB-NB1 binary vector fusing the HA-tag at the C-terminus. The resultant plasmids were introduced into *crr28-1* via *Agrobacterium tumefaciens* ASE.

Supplemental References

- Chateigner-Boutin, A.L., Ramos-Vega, M., Guevara-Garcia, A., Andrés, C., de la Luz Gutiérrez-Nava, M., Cantero, A., Delannoy, E., Jiménez, L.F., Lurin, C., Small, I., and León, P. (2008). CLB19, a pentatricopeptide repeat protein required for editing of *rpoA* and *clpP* chloroplast transcripts. Plant J. 56: 590-602.
- Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K.J., and Oelmuller, R. (2006). pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18: 176-197.
- de Longevialle, A.F., Hendricson, L., Taylor, N.L., Delannoy, E., Lurin, C., Badger, M., Millar, A.H., and Small, I. (2008). The pentatricopeptide repeat gene *OTP51* with two LAGLIDADG motifs is required for the *cis*-splicing of plastid *ycf3* intron 2 in *Arabidopsis thaliana*. Plant J. 56: 157-168.
- Genty, B., Briantais, J.M., and Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta **990**: 87-92.
- Shikanai, T., Endo, T., Hashimoto, T., Yamada, Y., Asada, K., and Yokota, A. (1998). Directed disruption of the tobacco *ndhB* gene impairs cyclic electron flow around photosystem I. Proc. Natl. Acad. Sci. USA 95: 9705-9709.
- D'haeseleer, P. (2005). How does gene expression clustering work? Nat. Biotechnol.23: 1499-1501.