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1 Compare TF binding signal and NFR signal

This figure shows the comparison of the signal patterns between a TF binding and

an NFR (Nucleosome Free Region) from tilling DNA microarray data.
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Supplementary Figure 1: A comparison of TF binding signal and nucleosome oc-

cupancy signal. The TF (Gcn4) binding data were reported previously[1]. Similar

pattern can be observed elsewhere [2]. The nucleosome occupancy data (H3) is

obtained in this study, which has higher resolution.

2 Algorithm of Segmental Semi-Markov Model

2.1 Notations

Segmental Semi-Markov Model (SSMM) has been used in speech recognition [3, 4].

We modified the conventional SSMM algorithm mainly in two aspects:
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1. We organized the input data in a hierarchical structure: probe → bin → seg-

ment, so that we do not require the time points to be strictly evenly spaced.

2. We required the continuity of consecutive segmental models.

We denote the parameters of a segmental semi-Markov model as Λ = {π,A, L,D, di(·), e(·)}),

which include 6 components:

1. π: the initial probability, π(i) = P (q1 = i), where qt indicates the state at time

t, and i indicates the ith state, 1 6 i 6 I, I is the total number of states.

2. A = {aij}: the transition probability, aij = P (qt+1 = j|qt = i).

3. L: length of each bin.

4. D: the maximum duration.

5. di(·): the density of duration of state i.

6. e(·): emission probability.

Suppose there are n observations (i.e., n probes in this NFR study). We denote

the observations as X = {x1, x2, ..., xn} and the corresponding time points (or probe

locations) as T = {t1, t2, ..., tn}. Thus the total number of bins, denoted by Z, is Z =

ceil(n/L). We use {ts1 , ..., tsZ
} to indicate the start of each bin and use {te1 , ..., teZ

}

to indicate the end of each bin. We use seg(i, p, q) to indicate a segment from

bin p to bin q (including p and q) with underlying state i. Without requirement of

continuity, previous works of SSMM defined the emission probabilities of one segment

seg(i, p, q) as ei(p, q) = P (xsp , xsp+1, ..., xeq |s(p, q) = i), where s(p, q) are states from

bin p to bin q. In this study, we use linear model as segmental model, and require the

linear model for segment seg(i, p, q) pass the predicted end point of previous segment

seg(j, o, p − 1). Thus we define the emission probability based on the previous
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segment as well: eji(o, p, q) = P (xsp , xsp+1, ..., xeq |s(p, q) = i, s(o, p − 1) = j), where

1 6 o 6 p− 1.

2.2 Segmental model fitting and emission probability calcu-

lation

Our SSMM model for NFR detection is illustrated in the main text. We use a

linear model as the segmental model and we list below additional details of segmen-

tal model fitting and emission probability calculation specifically designed for NFR

detection.

1. Given the end point of previous segment, the linear model for states 1 and 2,

which are horizontal lines, are already decided. Thus there is no need for model

fitting.

2. Given the end point of previous segment, denoted by (tprev, xprev), the linear

model for states 3 and 4 is (xw − xprev) = b(tw − tprev), where w is index of

those observation in the current segment of state 3 or 4. The coefficients b can

be estimated by least square method. Specifically,

b =
∑

w

(xw − xprev)(tw − tprev)/
∑

w

(tw − tprev)2.

3. We denote the residuals as rw = xw − x̂w, where x̂w is fitted value from the

segmental (linear) model. The emission probability (likelihood) of the segment

is calculated by assuming the residuals are from normal distribution with mean

0 and a maximum likelihood estimation of the variance σ̂2 =
∑

w r
2
w/nseg,

where nseg is the number of observations in the segment.
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4. The segmental models of states 3 and 4 have one more parameter than state 1

or 2, the slope. Penalized likelihood should be calculated, e.g., AIC or BIC. In

this study, we used BIC.

5. The triangle/trapezoid patterns with very small slopes on the two edges can

be frequently caused by data noise and are not of interest to us. They may also

cause over-fitting. Thus if the absolute value of an estimated slope is smaller

than 0.001, we forced it to be -0.001 or 0.001 in order to calculate the emission

probabilities for state 3 or 4 respectively.

2.3 Algorithms

Analogous to the algorithms in regular HMM, we presented the following four al-

gorithms for SSMM: Viterbi, forward, backward, and posterior probability. The

“Viterbi” algorithm finds the most likely complete path, while the forward and back-

ward algorithm together identify the posterior probability of which state one bin is

emitted from.

Viterbi algorithm is favored in our model fitting for the following reasons. As one of

the challenges in our model fitting, estimation of the emission probability eji(o, p, q)

between bin p and q requires the knowledge of the end point of the previous segmental

model from bin o to p− 1. This can be easily obtained in “Viterbi” algorithm since

when we calculate the emission probability of one segment, the most likely path in the

previous segments are already known. However, in forward and backward algorithm,

we only know that the previous segment is from bin o to p−1, corresponding to state

j, i.e., seg(j, o, p − 1). The calculation of the end point of seg(j, o, p − 1) requires

knowledge of where the segment before bin o ends, which is unknown. This difficulty
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can be bypassed if we do not require the continuity of the fitted curve. The starting

point of seg(j, o, p−1) can be set to be free allowing calculation of its end point, which

can be used as the start point of the segment seg(i, p, q). However, another limitation

of the forward-backward algorithm is that it takes much more computation time than

Viterbi algorithm, which is critical for high resolution tiling array data analysis. For

instance, the Viterbi algorithm is 34 times faster than forward-backward algorithm

for the model fitting of a 3000-probe segment (on a 2GHz Intel Core Duo MacBook

Pro, 1GB RAM). Given that it takes around 1 day for the Viterbi algorithm to finish

all the model fitting and parameter estimations for the entire genome, approximately

one month is needed for forward-backward algorithm.

The following algorithms are implemented in a R package ss.hmm, which can be freely

downloaded at http://www.bios.unc.edu/∼wsun/software.htm. In order to avoid

underflow, we carried out all the calculations in log scale. A function logsumexp(v)

is used during the calculation:

logsumexp(v) = log

(
G∑

g=1

exp(vg)

)
(1)

where v = {v1, v2, ..., vG} is a vector.

2.3.1 Viterbi

Input

X = {x1, x2, ..., xn}, T = {t1, t2, ..., tn} and parameters Λ = {π,A, L,D, di(·), e(·)},

where X are observations and T are the corresponding time.

Ouput

path(tw): 1 ≤ w ≤ n, the most probable path along time T .
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Intermediate Variables

p(k, i): the maximum probability that state i ends at bin k, log.p(k, i) = log(p(k, i)).

dura(k, i): the duration the segment that is emitted from state i and ends at bin k.

prev(k, i): the state before the segment that is emitted from state i and ends at bin k.

Algorithm

1. Calculate Intermediate Variables

For the first bin, k = 1,

p(1, i) = πidi(1)ei(1, 1) (2)

log.p(1, i) = log(πi) + log(di(1)) + log(ei(1, 1)) (3)

dura(1, i) = 1 (4)

For k > 2, suppose the previous state is j. We use d to indicate the duration

of state i, 1 6 d 6 min(k − 1, D). The start point of previous segment is

k′ = k − d− dura(k − d, j) + 1.

p(k, i, d, j) = p(k − d, j)ajidi(d)eji(k
′, k − d+ 1, k) (5)

log(p(k, i, d, j)) = log(p(k − d, j)) + log(aji) + log(di(d))

+ log(eji(k
′, k − d+ 1, k)) (6)

If k 6 D, it is possible that state i begins from the first time point, then

p(k, i, d = k, j = NULL) = πidi(k)ei(1, k) (7)

log(p(t, i, d = k, j = NULL)) = log(πi) + log(di(k)) + log(ei(1, k)) (8)
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Then we can calculate the best path ended at time k, state i by

p(k, i) = max
d,j

p(k, i, d, j) (9)

log.p(k, i) = max
d,j

log(p(k, i, d, j)) (10)

dura(k, i) = argmaxd log(p(k, i, d, j)) (11)

prev(k, i) = argmaxj log(p(k, i, d, j)) (12)

2. Trace back the best path

path(Z) = argmaxi(log.p(Z, i)) (13)

then find the previous segment that corresponds to state prev(Z, path(Z)) and

ends at time Z − dura(Z, path(Z)). Keep recurring to find the entire path.

2.3.2 Forward

Input

X = {x1, x2, ..., xn}, T = {t1, t2, ..., tn} and parameters Λ = {π,A, L,D, di(·), e(·)}.

Ouput

The forward probabilities for state i from bin p to q: f(i, p, q) = P (x1, ..., xeq , q(p, q) =

i|Λ), where 1 6 p 6 q 6 Z

Algorithm

Initialization

p = 1, q = {1, ...,min(Z,D)}:

f(i, 1, q) = π(i)di(q)ei(1, q) (14)

log(f(i, 1, q)) = log(π(i)) + log(di(q)) + log(ei(1, q)) (15)
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Recursion

p = {2, ..., Z}, and for each p, q = {p, ...,min(p + D − 1, Z)}, o = {max(1, p −

D), ..., p− 1}.

f(i, p, q) =
∑
j 6=i

[[∑
o

f(j, o, p− 1)eji(o, p, q)

]
aji

]
di(q − p+ 1) (16)

log(f(i, p, q)) = logsumexpj 6=i[logsumexpo [log(f(j, o, p− 1)) + log(eji(o, p, q))]

+ log(aji)] + log(di(q − p+ 1)) (17)

2.3.3 Backward

Input

X = {x1, x2, ..., xn}, T = {t1, t2, ..., tn} and parameters Λ = {π,A, L,D, di(·), e(·)}

Ouput

The backward probabilities for state i from bin p to q: b(i, p, q) = P (xsq+1, ..., xn|q(p, q) =

i,Λ), where 1 6 p 6 q 6 Z

Algorithm

Initialization

b(i, p, Z) = 1 (18)

log(b(i, p, Z)) = 0 (19)

Recursion

q = {Z−1, ..., 1}, and for each q, p = {max(1, q−D+1), ..., q}, r = {q+1, ...,min(q+
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D,Z)}.

b(i, p, q) =
∑
j 6=i

[
aij

[∑
r

eij(p, q + 1, r)dj(r − q)b(j, q + 1, r)

]]
(20)

log(b(i, p, q)) = logsumexpj 6=i[log(aij) + logsumexpr[log(eij(p, q + 1, r))

+ log(dj(r − q)) + log(b(j, q + 1, r))]] (21)

2.3.4 Posterior probability

Calculate the posterior probability based on forward and backward algorithm.

Input

forward probability {f(i, u, v)} and backward probability {b(i, u, v)}, where i (1 6

i 6 I) indicates the state and u and v (1 6 u 6 v 6 Z) indicate the bins.

Ouput

pi(k): posterior probability P (q(k) = i|X,Λ), where q(k) indicates state of the k-th

bin.

Algorithm

pi(k) = P (q(k) = i|X,Λ) =
P (q(k) = i,X|Λ)

P (X|Λ)

∼ P (q(k) = i,X|Λ)

=
∑

u

∑
v

f(i, u, v)b(i, u, v) (22)

where max(t−D + 1, 1) 6 u 6 k and k 6 v 6 min(u+D − 1, Z).

log(pi(k)) = C + log(P (q(k) = i|X,Λ)
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= C + logsumexpu[logsumexpv[log(f(i, u, v)) + log(b(i, u, v))]] (23)

where C is a normalizatioin constant so that
∑

i pi(k) = 1.

2.4 Parameter estimation

We need to estimate the transition probabilities from state 3 to state 2/4 (other

transition probabilities are fixed as 0 or 1), and the probability distributions of

state durations (See main text Figure 2 for description of the states). For HMM,

parameters are usually estimated by Baum-Welch algorithm (an EM algorithm) [3, 5].

However, as explained in previous section, this EM algorithm cannot be applied to

our SSMM because we require the continuity of the fitted curve. Even if we do

not require the continuity of the fitted curve, the EM algorithm that used forward-

backward algorithm takes much more time than Viterbi algorithm. Therefore we

choose to use Viterbi algorithm [3, 5] for parameter estimation. With one set of

initial parameters, we can generate the most likely path, which is used to update the

parameter estimations, and iterate until the parameter estimations converge. The

most likely path at convergence is our final result.

The difference between the algorithm we used and Baum-Welch algorithm is anal-

ogous to the difference between (hard) K-mean clustering and soft K-mean (EM)

clustering. For hard K-mean, one point is assigned to the most likely cluster, while

for soft K-mean, posterior probabilities of cluster memberships are estimated. Sim-

ilarly, in our SSMM algorithm, we assume one bin is emitted from the most likely

state, while in Baum-Welch algorithm, posterior probabilities of underlying states

are used.

We do not wish to make restrictions on the distribution functions of duration or tran-
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sition probabilities. We start with the uniform distributions. The initial transition

matrix is: 
0 0 1 0

0 0 0 1

0 0.5 0 0.5

1 0 0 0


where the number in i-th row and j-th column is the transition probability from

state i to j: aij. The duration of each state is counted by the number of “bins”

(each “bin” covers 50bp). The initial distributions of durations for state 1 to 4 are

uniform(6,100), uniform(3,30), uniform(3,50), and uniform(3,50) respectively. The

only restriction here is the ranges. We do not allow too short durations in order to

avoid over-fitting. The maximums of durations are set to be large enough to cover

all possible durations. At convergence, the transition probabilities are a32 = 0.37,

a34 = 0.63. The following Supplementary Figure 2 shows the distribution of state

durations at convergence of parameter estimation, where X-axis is the duration in

base pair, and Y-axis is the frequency.
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Supplementary Figure 2: Distribution of state durations after convergence

2.5 R2 estimation

After fitting the SSMM, we can obtain the predicted intensity for each probe. Denote

the observed and data at probe i and yi, the predicted value as ŷi, and the residual

as ri, that is

yi = ŷi + ri (24)

We use n to denote the sample size and use ȳ to denote the sample mean of y, then

the sample variance of y can be decomposed as

var(y) =
1

n− 1

n∑
i=1

(yi − ȳ)2 (25)

=
1

n− 1

[
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

(yi − ŷi)(ŷi − ȳ) +
n∑

i=1

(ŷi − ȳ)2

]
(26)
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In the situation of linear model least-sqaure fitting, the term 1
n−1

∑n
i=1(yi− ŷi)(ŷi− ȳ)

is 0, therefore the sample variance of y can be decomposed as the summation of the

residual variance 1
n−1

∑n
i=1(yi − ŷi)

2 and the variance explained by the model fitting

1
n−1

∑n
i=1(ŷi − ȳ)2, and R2 is defined as

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳi)2

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(27)

By our SSMM model fitting, the term 1
n−1

∑n
i=1(yi− ŷi)(ŷi− ȳ) may not be 0 because

we have restrictions regarding the start point of each segment in order to obtain a

continuous curve across the genome. Nevertheless, as long as the linear model is a

resonable segmental model, the term 1
n−1

∑n
i=1(yi − ŷi)(ŷi − ȳ) should be close to 0,

and we can define a conservative estimation of R2 as

R2 = min

(∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳi)2

, 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2

)
(28)

For example, by applying our SSMM to our nuclesome occupation data, we identified

9593 NFRs that cover 1,293,610 probes in total. Based on the result of our SSMM,

we can obtain ŷi i = 1, ..., 1, 293, 610 for each of these probes and the following

numerical resutls:

1

n− 1

n∑
i=1

(yi − ȳi)
2 = 0.120758 (29)

1

n− 1

n∑
i=1

(yi − ŷi)
2 = 0.006175 (30)

1

n− 1

n∑
i=1

(ŷi − ȳ)2 = 0.116389 (31)

1

n− 1

n∑
i=1

(yi − ŷi)(ŷi − ȳ) = −0.000903 (32)

Therefore the conservative estimation of R2 is

R2 = min(0.116389/0.120758, 1− 0.006175/0.120758) = 0.949 (33)
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3 Analysis of the raw data of nucleosome occu-

pancy

3.1 Data validation

First we compared our nucleosome occupancy data with previously published genome-

wide data in lower resolutions. Because our data have a higher resolution, we calcu-

late Pearson’s correlation using a coarse-grained version of our data. Supplementary

Tables 1-3 list the correlations between our data and data from Bernstein et al. [6],

Lee et al. [7], and Pokholok et al. [1] respectively.

Supplementary Table 1: Correlations between our data and the data by Bernstein

et al.

Bernstein et al. [6] studied the occupancy of H2B and H3 in ∼ 6000 intergenic/promoter
regions in yeast genome. For a coarse-grained version of our data we calculated either mean
or median of our data in each of the 6000 intergenic/promoter regions used by Bernstein
et al. [6].

H3 H2B Average H3 H2B

Mean 0.68 0.56 0.66
Median 0.67 0.56 0.66
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Supplementary Table 2: Correlations between our data and the data by Lee et al.

Lee et al. [7] examined the occupancy of H3 and H4 in ∼ 12000 intergenic regions and
ORFs. For a coarse-grained version of our data we calculated either mean or median of
our data in each of the 12000 intergenic regions used by Lee et al. [7].

MycH4 H3 Average MycH4 H3

Mean 0.75 0.71 0.78
Median 0.74 0.70 0.77

Supplementary Table 3: Correlations between our data and the data by Pokholok et

al.

Pokholok et al. [1] performed ChIP-chip experiments for H3 and H4 using 60-mer Agilent
DNA microarrays, which have ∼ 41000 probes covering 85% of the yeast genome. For a
coarse-grained version of our data we calculated either mean or median of our data in each
of the 41000 regions covered by probes used by Lee et al. [7].

H4 H3 Average H4 H3

Mean 0.68 0.48 0.62
Median 0.68 0.48 0.62
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3.2 Nucleosome occupancy at various chromosomal features

As a preliminary investigation of regions with low nucleosome occupancy in yeast

genome, we compared the nucleosome occupancies in various chromosomal features

with those in intergenic regions (Supplementary Table 4). Chromosome features are

defined by SGD [8], which include ORF (Open Reading Frame), ARS (Autonomously

Replicating Sequence), rRNA, tRNA, snRNA (small nuclear RNA), snoRNA (small

nucleolar RNA), rRNA, long terminal repeat, telomeric elements, introns and trans-

posons. The comparison between chromosome features and intergenic regions was

carried out by student t-test. One technical problem is that t-test is biased by the

high dependency between signals of adjacent probes due to probe overlaps. Thus

for each feature, we randomly selected one probe from each instance of the feature

and one probe from each intergenic regions, forming two groups for t-test. This

was repeated for 50 times and the medians and two quantiles of the t-statistics are

reported in Supplementary Table 4. We found that while the majority of chromo-

somal features have higher nucleosome occupancies than intergenic regions, a few

classes including tRNA, intron, cetromere, and snoRNA, however, have even lower

nucleosome occupancies than intergenic regions.
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Supplementary Table 4: Nucleosome occupancies at chromosome features vs. inter-

genic regions

In this table, n is the total number of instances of one chromosome feature. nmedian is
the median number of probes selected. In different permutations, the number of probes
selected may be different because different instances of one feature may overlaps, thus
nmedian may be smaller than n. tmedian is the median of t-statistics. pmedian, p25%, and
p75% are median, 1st quantile, and 3rd quantile of the t-test p-values respectively. The
features are ordered by medians of t-statistics.

Feature n nmedian tmedian pmedian p25% p75%

tRNA 299 275 -43.63 1.9e-147 1.9e-149 7.5e-146
snoRNA 75 75 -5.09 2.5e-06 1.4e-06 4.9e-06
intron 367 334 -2.66 0.0081 0.0051 0.018
ARS 248 248 -1.52 0.13 0.084 0.19
ncRNA 9 8 -1.35 0.22 0.18 0.27
telomeric repeat 31 31 -0.65 0.52 0.35 0.79
snRNA 6 6 -0.34 0.75 0.49 0.83
X element combinatorial repeats 28 28 5.45 8.4e-06 2.8e-07 4.3e-05
ARS consensus sequence 66 32 6.14 7.7e-07 4.8e-07 1e-06
telomere 32 32 8.84 4.2e-10 1.2e-11 3.6e-09
pseudogene 21 21 10.22 1.8e-09 5.8e-10 7.7e-09
X element core sequence 32 32 10.97 1.7e-12 2.3e-14 2.6e-11
Y’ element 19 19 12.62 1.3e-10 3.2e-13 3.6e-08
rRNA 27 25 13.02 8.6e-13 1.7e-14 4.6e-11
retrotransposon 50 50 20.06 1.3e-26 1.6e-29 1.2e-24
transposable element gene 89 89 24.14 2.3e-44 1.2e-47 3.7e-41
ORF 6604 6574 49.97 0 0 0
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4 Compare absolute depletion and relative deple-

tion of NFRs

Supplementary Figure 3: Absolute depletion vs. relative depletion
R denotes relative depletion and A denotes absolute depletion. The red line indicates
R = −A.

This scatter plot shows that the two measurements of nucleosome depletion are well

correlated. We shall use R = −A > α as the primary cutoff criteria for selecting

NFRs for further investigation.
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5 Distributions and lengths of NFRs with differ-

ent DoND

We systematically examined the proportions of NFRs in intergenic or the promoter

regions (defined as 500bp upstream of coding regions). Information of intergenic

regions and ORF start positions were downloaded from SGD [8]. The total length

of intergenic regions is about 2.88Mb, or 23.9% of the 12.07Mb yeast genome. The

500bp upstream regions of 6604 ORFs occupy roughly 2.82Mb DNA sequences, or

23.3% of the yeast genome. About 1.83 Mb (15.2%) DNA sequence is both at inter-

genic regions and 500bp upstream of coding regions. As expected, NFRs with higher

DoND are more likely located in intergenic or the promoter regions (Supplementary

Figure 4-5). The enrichment of NFRs in intergenic regions or the promoter regions is

highly significant (Chi-square test p-value < 1e−80 for any cutoffs of absolute deple-

tion and/or relative depletion from 0.2 to 1.0). In addition, those intergenic regions

that are also upstream of coding regions are more likely to contain NFRs (Chi-square

test p-value < 5e−10 for any cutoffs from 0.2 to 1.0).
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Supplementary Figure 4: Locations of NFRs vs. absolute depletion
The proportions of NFR patterns located in intergenic regions, 500bp upstream of ORFs,
and either intergenic or 500bp upstream region according to different cutoffs of absolute
depletion. The dash line indicates the total number of NFR patterns at different cutoffs of
absolute depletion (corresponding to the axis on the right side).
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depletion. The dash line indicates the total number of NFR patterns at different cutoffs of
relative depletion (corresponding to the axis on the right side).
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Among all 6640 intergenic regions, 1617 (24.4%) are divergent intergenic regions,

3087 (46.5%) are tandem intergenic regions, and 1599 (24.1%) are convergent inter-

genic regions. We excluded 337 (5%) intergenic regions, in which at least one of the

adjacent chromosomal features lacks transcription orientation, e.g., ARS. The total

lengths of divergent, tandem, and convergent intergenic regions are 0.47Mb (17% of

all the intergenic regions), 1.42Mb (51%), and 0.87Mb (31%) respectively.
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Supplementary Figure 6: Different intergenic regions vs. NFR absolute/relative

depletion
The proportions of NFRs located at convergent, divergent and tandom intergenic regions
according to different cutoffs of relative depletion and absolute depletion. Specifically, a
cutoff α (α < 0) indicates the absolute depletion is smaller than α and the relative depletion
is bigger than −α. The dash line indicates the total number of NFRs within the three types
of intergenic regions at different cutoffs (corresponding to the axis on the right side).
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Supplementary Figure 7: Different intergenic regions vs. NFR absolute depletion
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Supplementary Figure 8: Different intergenic regions vs. NFR relative depletion
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We also partitioned the promoter regions of 6604 ORFs based on whether they

contain TATA box [9]. After excluding 933 promoters whose TATA box information

is not available, 1090 (19.2%) of the remaining promoters are classified as TATA box-

containing promoters and 4581 (80.8%) are TATA-less promoters. The proportions

of NFRs that are located at different promoter regions were examined, and we found

that NFRs with heavy nucleosome depletion are more likely to be TATA-containing

promoters (Supplementary Figure 9, 10, 11).
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Supplementary Figure 9: TATA box-containing promoters vs. NFR absolute/relative

depletion
The proportions of NFR patterns located in 500 bp upstream promoters with TATA box
according to different cutoffs of relative depletion and absolute depletion. Specifically, a
cutoff α (α < 0) indicates the absolute depletion is smaller than α and the relative depletion
is bigger than −α. The dash line indicates the total number of NFR patterns located in 500
bp upstream promoters at different cutoffs (corresponding to the axis on the right side).
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It has been shown previously that TF binding sites are over-represented in nucleosome-

depleted promoters [6]. We further examined the co-occurrence of TF binding sites

and NFRs in a genome-wide scale. The TF binding sites, including 4312 binding sites

with lengths ranging from 4bp to 22bp, were previously inferred by two conservation

based motif discovery methods [10] using a genome-wide TF binding study [11]. We

define a TF binding site falling into a NFR if the mid-point of the binding site is

covered by that NFR. We showed that the proportion of NFRs harboring TF bind-

ing sites increases as the degree of nucleosome depletion increase (Supplementary

Figure 12, 14, 13).

−1.5 −1.0 −0.5 0.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Absolute Depletion / −Relative Depletion

P
ro

po
rt

io
n 

of
 N

F
R

 P
at

te
rn

s

0
10

00
30

00
50

00
70

00

T
ot

al
 N

um
be

r 
of

 N
F

R
 P

at
te

rn
s

●

0.15

●

7442

●

0.29

●

3431●

0.38

●

1863

●

0.44

●

931

●

0.51

●

511

●

0.55

●

295

●

0.61

●

189

●

0.64

●

121

●

0.65

●

78

●

0.69

●

39

NFR patterns harboring TF binding site(s)   

Supplementary Figure 12: TF binding sites vs. absolute/relative depletion
The proportions of NFRs harboring TF binding site(s) according to different cutoffs of
relative depletion and absolute depletion. Specifically, a cutoff α (α < 0) indicates the
absolute depletion is smaller than α and the relative depletion is bigger than −α. The
dash line indicates the total number of NFR patterns at different cutoffs (corresponding
to the axis on the right side).
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Supplementary Figure 13: TF binding sites vs. absolute depletion
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Supplementary Figure 14: TF binding sites vs. relative depletion
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Figure 16: Locations of NFRs in promoters regions relative to ORF
The locations of 3393 NFRs within promoter regions (500 upstream of ORF) relative to the
ORF start sites. (a) The centers of NFRs relative to ORF start sites. (b) The boundaries
of NFRs relative to ORF start sites.
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Supplementary Figure 15: Locations of NFRs in the promoters regions relative to

ORFs
The locations of 3393 NFRs within the promoter regions (500 upstream of ORFs) relative
to the ORF start sites. (a) The centers of NFRs relative to the ORF start sites. (b) The
boundaries of NFRs relative to the ORF start sites.

31



All

NFR duration (bps)

F
re

qu
en

cy

500 1000 1500

0
10

00
25

00
(n=9593)

A < −0.1 & R > 0.1

500 1000 1500

0
40

0
80

0

(n=5766)

A < −0.2 & R > 0.2

200 600 1000 1400

0
20

0
40

0
60

0

(n=3431)

A < −0.4 & R > 0.4

200 600 1000 1400

0
10

0
30

0

(n=1863)

A < −0.6 & R > 0.6

200 600 1000 1400

0
50

15
0

(n=931)

A < −0.8 & R > 0.8

200 600 1000 1400

0
20

60
10

0

(n=511)

Supplementary Figure 16: NFR lengths vs. absolute/relative depletion
The X-axis indicates the lengths of NFRs in base pair, and the Y-axis indicates the fre-
quency of NFRs. The numbers in parentheses are the counts of NFRs according to the
cutoffs of DoND.
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Supplementary Figure 17: NFR lengths vs. absolute depletion

33



R > 0

NFR duration (bps)

F
re

qu
en

cy

500 1000 1500

0
10

00
25

00

(n=9593)

R > 0.2

500 1000 1500

0
20

0
40

0
60

0

(n=4318)

R > 0.4

200 600 1000 1400

0
10

0
30

0

(n=2177)

R > 0.6

200 600 1000 1400

0
50

15
0

25
0 (n=1154)

R > 0.8

200 600 1000 1400

0
40

80
12

0

(n=606)

R > 1.0

200 600 1000 1400

0
20

40
60

(n=339)

Supplementary Figure 18: NFR lengths vs. relative depletion
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6 Nucleosome depletion forces: DNA affinity for

histones and transcriptional activity

In order to examine the contributions of transcriptional activity and DNA affinity for

histones, we used a bivariate additive linear model with DoND (either absolute deple-

tion or relative depletion) as response and the two factors as covariates. Specifically,

the linear model can be written as

y = b0 + b1x1 + b2x2 + e,

where y, x1, and x2 are DoND, DNA affinity for histones and Pol II binding level

respectively, and b0, b1, and b2 are linear regression coefficients and e is the residual

error. Because DoND is positively correlated with DNA affinity and negatively cor-

related with Pol II binding, b1 is positive and b2 is negative. The variance explained

by DNA affinity and Pol II are b21var(x1) and b22var(x2), respectively. The covariance

term is cov(b1x1, b2x2) = b1b2cov(x1, x2). Due to the opposite signs of coefficients

b1 and b2, as well as the weak negative correlation between DNA affinity and Pol II

binding level (ranging from -0.088 to 0 in all cases we considered), the covariance

term is positive, which we considered as the variance explained by both factors. In

addition, since the correlation between x1 and x2 is weak, the covariance term is

small compared to the total variance of DoND explained by this linear model.
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Supplementary Table 5: Correlation matrix of DoND and average Pol II binding

level

Variables: A, absolute depletion; R, relative depletion; polNfr, average Pol II binding
within NFRs; polPro(1k)/polPro(500), average Pol II binding 1000/500bp upstream of
NFRs; polAfr(1k)/polAfr(500), average Pol II binding 1000/500bp downstream of NFRs;
polAdj(1k)/polAdj(500), max(polPro, polAfr).

The average Pol II level was calculated using 500bp up- and down-stream of each NFR.

A R polNfr polPro(1k) polAfr(1k) polAdj(1k)

A 1.000 -0.853 -0.086 -0.188 -0.196 -0.342

R -0.853 1.000 0.042 0.159 0.170 0.282

polNfr -0.086 0.042 1.000 0.779 0.749 0.824

polPro(1k) -0.188 0.159 0.779 1.000 0.518 0.813

polAfr(1k) -0.196 0.170 0.749 0.518 1.000 0.812

polAdj(1k) -0.342 0.282 0.824 0.813 0.812 1.000

The average Pol II level was calculated using 1000bp up- and down-stream of each NFR.

A R polNfr polPro(500) polAfr(500) polAdj(500)

A 1.000 -0.853 -0.086 -0.176 -0.180 -0.324

R -0.853 1.000 0.042 0.151 0.158 0.272

polNfr -0.086 0.042 1.000 0.834 0.816 0.873

polPro(500) -0.176 0.151 0.834 1.000 0.599 0.847

polAfr(500) -0.180 0.158 0.816 0.599 1.000 0.841

polAdj(500) -0.324 0.272 0.873 0.847 0.841 1.000
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Supplementary Table 6: Linear model coefficients using all 9593 NFRs

This table lists the coefficients and the corresponding p-values of three linear models:
(1) Absolute depletion ∼ DNA,
(2) Absolute depletion ∼ Pol II,
(3) Absolute depletion ∼ DNA + Pol II.
As we obtained similar results using relative depletion for DoND as those using absolute
depletion, and the linear model coefficients are not of main interest, we only list the co-
efficients using absolute depletion here. The DNA affinity for histones of an NFR was
calculated using the average probability of “nucleosome occupancy” inferred by Segal et
al. [12] for all the basepairs in the NFR. The average Pol II binding level was calculated
respectively for up- and down-stream of each NFR and the maximum of these two averages
is defined as the Pol II binding level as described in the paper. The three models were fitted
using three different data sets: all 9593 NFRs, 4386 NFRs located in intergenic regions or
500bp upstream of ORFs, and the rest 5207 NFRs.

The average Pol II level was calculated using 500bp up- and down-stream of each NFR.

Model All NFRs Intergenic/Upstream Others
DNA Pol II DNA Pol II DNA Pol II

1 0.45 5e-27 NA NA 1.07 5e-46 NA NA 0.15 8e-08 NA NA
2 NA NA -0.21 4e-233 NA NA -0.23 5e-141 NA NA -0.03 7e-09
3 0.4 3e-24 -0.2 2e-230 0.99 3e-45 -0.22 4e-140 0.15 2e-07 -0.03 2e-08

The average Pol II level was calculated using 1000bp up- and down-stream of each NFR.

Model All NFRs Intergenic/Upstream Others
DNA Pol II DNA Pol II DNA Pol II

1 0.45 5e-27 NA NA 1.07 5e-46 NA NA 0.15 8e-08 NA NA
2 NA NA -0.23 1e-260 NA NA -0.26 3e-161 NA NA -0.04 1e-09
3 0.4 1e-24 -0.23 3e-258 0.98 7e-45 -0.25 5e-160 0.15 2e-07 -0.04 3e-09
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Supplementary Table 7: Linear model coefficients for different intergenic regions

This table lists the coefficients and the corresponding p-values of three linear models:
(1) Absolute depletion ∼ DNA,
(2) Absolute depletion ∼ Pol II,
(3) Absolute depletion ∼ DNA + Pol II.
The three models were fitted using three different data sets: 516 NFRs located in convergent
intergenic regions, 2042 NFRs located in tandem intergenic regions, and 1125 NFRs located
in divergent intergenic regions.

The average Pol II level was calculated using 500bp up- and down-stream of each NFR.

Model Convergent Tandem Divergent
DNA Pol II DNA Pol II DNA Pol II

1 0.8 3e-05 NA NA 1.14 9e-26 NA NA 1.08 1e-09 NA NA
2 NA NA -0.11 2e-08 NA NA -0.22 4e-69 NA NA -0.3 6e-56
3 0.75 5e-05 -0.1 4e-08 1.08 4e-27 -0.22 2e-70 0.85 1e-07 -0.29 6e-54

The average Pol II level was calculated using 1000bp up- and down-stream of each NFR.

Model Convergent Tandem Divergent
DNA Pol II DNA Pol II DNA Pol II

1 0.8 3e-05 NA NA 1.14 9e-26 NA NA 1.08 1e-09 NA NA
2 NA NA -0.11 1e-07 NA NA -0.25 4e-73 NA NA -0.34 6e-66
3 0.75 5e-05 -0.11 2e-07 1.08 4e-27 -0.24 2e-74 0.81 3e-07 -0.33 2e-63
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Supplementary Table 8: Linear model coefficients for different promoter regions

This table lists the coefficients and the corresponding p-values of three linear models:
(1) Absolute depletion ∼ DNA,
(2) Absolute depletion ∼ Pol II,
(3) Absolute depletion ∼ DNA + Pol II.
The three models were fitted using two different data sets: 2570 NFRs located in TATA-less
promoter regions, and 612 NFRs located in the promoter regions with TATA box.

The average Pol II level was calculated using 500bp up- and down-stream of each NFR.

Model TATA-less TATA
DNA Pol II DNA Pol II

1 0.54 2e-09 NA NA 1.14 2e-09 NA NA
2 NA NA -0.25 2e-117 NA NA -0.27 2e-26
3 0.42 3e-07 -0.24 3e-115 1.16 2e-11 -0.27 2e-28

The average Pol II level was calculated using 1000bp up- and down-stream of each NFR.

Model TATA-less TATA
DNA Pol II DNA Pol II

1 0.54 2e-09 NA NA 1.14 2e-09 NA NA
2 NA NA -0.27 2e-126 NA NA -0.3 5e-31
3 0.42 2e-07 -0.27 2e-124 1.13 2e-11 -0.3 8e-33
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Supplementary Table 9: Linear model coefficients for TFBS-containing or TFBS-less

NFRs

This table lists the coefficients and the corresponding p-values of three linear models:
(1) Absolute depletion ∼ DNA,
(2) Absolute depletion ∼ Pol II,
(3) Absolute depletion ∼ DNA + Pol II.
The three models are fitted using two different data sets: 1116 NFRs harboring TFBSs,
and 8477 NFRs that do not contain TFBSs (TFBS-less).

The average Pol II level was calculated using 500bp up- and down-stream of each NFR.

Model TFBS-less TFBS
DNA Pol II DNA Pol II

1 1.97 7e-28 NA NA 0.21 1e-08 NA NA
2 NA NA -0.24 2e-24 NA NA -0.14 6e-135
3 1.85 1e-26 -0.22 3e-23 0.19 8e-08 -0.14 4e-134

The average Pol II level was calculated using 1000bp up- and down-stream of each NFR.

Model TFBS-less TFBS
DNA Pol II DNA Pol II

1 1.97 7e-28 NA NA 0.21 1e-08 NA NA
2 NA NA -0.28 3e-30 NA NA -0.16 7e-151
3 1.83 8e-27 -0.26 3e-29 0.19 5e-08 -0.16 3e-150
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Supplementary Table 10: Compare the effects of DNA affinity for histones and tran-

scriptional activity using absolute depletion for DoND

We compared the effects of DNA affinity for histones and transcriptional activity by the

following three linear models:

(1) Absolute depletion ∼ DNA,

(2) Absolute depletion ∼ Pol II,

(3) Absolute depletion ∼ DNA + Pol II,

where Pol II signal was calculated as the maximum of the two averages across 1000bp up-

and down-stream of each NFR.

Column “N” refers to the number of NFRs. R2
1, R2

2, and R2
3 denotes the R2 of model (1),

(2), and (3) respectively. R2
Total = R2

3, which is the total proportion of variance explained
by DNA affinity for histones or transcriptional activity. R2

DNA = R2
3−R2

2, which is the R2

explained solely by DNA affinity for histones. R2
PolII = R2

3−R2
1, which is the R2 explained

solely by Polymerase II binding signal. R2
Both = R2

Total - R2
PolII - R2

DNA, denoting the R2

explained by both Polymerase II signal and DNA affinity for histones. R2
Both is not zero

due to the correlation between DNA affinity and Polymerase II binding [13]. PPolII is the
ANOVA p-value comparing model (3) against model (1). PDNA is the ANOVA p-value
comparing model (3) against model (2).

N R2
Total R2

DNA R2
PolII R2

Both PPolII PDNA

All NFRs 9593 0.1263 0.0096(7.6%) 0.1142(90.4%) 0.0024(1.9%) 3e-258 1e-24
Inter./Up. 4386 0.1911 0.0373(19.5%) 0.1459(76.3%) 0.0079(4.1%) 5e-160 7e-45
Others 5207 0.0122 0.0052(42.6%) 0.0067(54.9%) 3e-04(2.5%) 3e-09 2e-07

Convergent 516 0.0837 0.0302(36.1%) 0.0499(59.6%) 0.0036(4.3%) 2e-07 5e-05
Tandem 2042 0.1955 0.0472(24.1%) 0.1429(73.1%) 0.0053(2.7%) 2e-74 4e-27
Divergent 1125 0.2483 0.0179(7.2%) 0.2159(87.0%) 0.0146(5.9%) 2e-63 3e-07

TATA 612 0.2542 0.0567(22.3%) 0.1965(77.3%) 9e-04(0.4%) 8e-33 2e-11
TATA-less 2570 0.2082 0.0084(4.0%) 0.1941(93.2%) 0.0057(2.7%) 2e-124 2e-07

TFBS 1116 0.198 0.0874(44.1%) 0.0961(48.5%) 0.0146(7.4%) 3e-29 8e-27
TFBS-less 8477 0.0808 0.0032(4.0%) 0.077(95.3%) 6e-04(0.7%) 3e-150 5e-08
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Supplementary Figure 19: This figure shows the Pol II binding level (log ratio from

our ChIP-chip results), DNA affinity for histones (posterior probability of histone

binding from Segal et al. [12]), and nucleosome occupancy level (log ratio from our

ChIP-chip results) around the gene YMR279C.
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Supplementary Table 11: Compare the effects of DNA affinity for histones and tran-

scriptional activity using relative depletion for DoND.

N R2
Total R2

DNA R2
PolII R2

Both PPolII PDNA

All NFRs 9593 0.0887 0.009(10.1%) 0.0779(87.8%) 0.0019(2.1%) 5e-173 3e-22
Inter./Up. 4386 0.1203 0.0293(24.4%) 0.0857(71.2%) 0.0054(4.5%) 1e-90 5e-33
Others 5207 0.0062 0.005(80.6%) 0.001(16.1%) 1e-04(1.6%) 0.02 3e-07

Convergent 516 0.0428 0.0337(78.7%) 0.0076(17.8%) 0.0015(3.5%) 0.04 3e-05
Tandem 2042 0.1081 0.0264(24.4%) 0.0787(72.8%) 0.003(2.8%) 2e-39 1e-14
Divergent 1125 0.1731 0.0156(9.0%) 0.1465(84.6%) 0.011(6.4%) 1e-41 5e-06

TATA 612 0.1749 0.0423(24.2%) 0.132(75.5%) 7e-04(0.4%) 2e-21 3e-08
TATA-less 2570 0.1204 0.007(5.8%) 0.1095(90.9%) 0.0039(3.2%) 2e-67 6e-06

TFBS 1116 0.1483 0.0668(45.0%) 0.0707(47.7%) 0.0109(7.3%) 5e-21 5e-20
TFBS-less 8477 0.0464 0.0029(6.2%) 0.0431(92.9%) 4e-04(0.9%) 2e-83 4e-07
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7 NFRs outside of the promoters or intergenic re-

gions

Supplementary Table 12: Distribution of 145 NFRs falling outside of the promoters

or intergenic regions.

This table lists 145 NFRs with high DoND (R > 0.4 and A < −0.4) that lie outside of
intergenic or 500bp upstream of ORFs.

Feature Number of NFRs

ORF 58

tRNA 52

ARS 16

long terminal repeat 9

Y’ element 4

intron 2

rRNA 2

X element core sequence 1

snRNA 1
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Supplementary Table 13: List of 25 verified ORFs containing genic NFRs.

ORF Symbol Chr Start End

YLL042C ATG10 12 52589 52086
YPL111W CAR1 16 339943 340944
YIR030C DCG1 9 412767 412033
YPR166C MRP2 16 876625 876278
YFL003C MSH4 6 137152 134516
YHR091C MSR1 8 286772 284841
YAR002W NUP60 1 152259 153878
YKR003W OSH6 11 445024 446370
YDL232W OST4 4 38488 38598
YLR148W PEP3 12 434642 437398
YFR034C PHO4 6 225946 225008
YOR361C PRT1 15 1017650 1015359
YGR170W PSD2 7 837147 840563
YOR348C PUT4 15 988779 986896
YOR210W RPB10 15 738321 738533
YLR141W RRN5 12 423684 424775
YOL110W SHR5 15 109176 109889
YOL122C SMF1 15 91419 89692
YDR308C SRB7 4 1078445 1078023
YBR150C TBS1 2 544487 541203
YNL070W TOM7 14 493367 493549
YER093C TSC11 5 347608 343316
YLR024C UBR2 12 193282 187664
YAL002W VPS8 1 143709 147533
YAR035W YAT1 1 190187 192250
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Supplementary Table 14: List of 33 dubious or uncharacterized ORFs containing

genic NFRs. The dubious ORFs, but not the uncharacterized ORFs, are over-

represented in ORFs containing genic NFRs (hypergeometric p-value = 1e-5) based

on the SGD [8] annotations, implying that some of the dubious ORFs may not be

real coding genes.

Type ORF Symbol Chr Start End Strand

Dubious YAR060C NA 1 217483 217148 C
Dubious YBL048W NA 2 127302 127613 W
Dubious YBR209W NA 2 642578 642895 W
Dubious YDR010C NA 4 465380 465048 C
Dubious YDR215C NA 4 894498 894115 C
Dubious YDR274C NA 4 1011956 1011585 C
Dubious YDR278C NA 4 1017314 1016997 C
Dubious YGR107W NA 7 702671 703120 W
Dubious YHL041W NA 8 17390 17839 W
Dubious YHR070C-A NA 8 236514 236104 C
Dubious YHR212C NA 8 538094 537759 C
Dubious YIL054W NA 9 254541 254858 W
Dubious YKL102C NA 11 248011 247706 C
Dubious YML089C NA 13 91409 91041 C
Dubious YML122C NA 13 26419 26039 C
Dubious YNL285W NA 14 96173 96544 W
Dubious YOR029W NA 15 384600 384935 W
Dubious YOR050C NA 15 424619 424272 C
Dubious YOR343C NA 15 968471 968145 C
Dubious YPR014C NA 16 587515 587186 C
Dubious YPR064W NA 16 678948 679367 W
Uncharacterized YAR064W NA 1 220189 220488 W
Uncharacterized YBL044W NA 2 136001 136369 W
Uncharacterized YER077C NA 5 316596 314530 C
Uncharacterized YFR032C-B NA 6 223961 223698 C
Uncharacterized YGL176C NA 7 173085 171421 C
Uncharacterized YGR068C NA 7 627088 625328 C
Uncharacterized YHR202W NA 8 502388 504196 W
Uncharacterized YHR213W-B NA 8 540800 541099 W
Uncharacterized YJR003C NA 10 442468 440909 C
Uncharacterized YMR196W NA 13 655075 658341 W
Uncharacterized YOR268C NA 15 825931 825533 C
Uncharacterized YPR159C-A NA 16 860411 860310 C46
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