Supplementary Data

SOLUTION STRUCTURE OF THE Nav1.2 C-TERMINAL EF-HAND DOMAIN Vesselin Z. Miloushev, Joshua A. Levine, Mark A. Arbing, John F. Hunt, Geoffrey S. Pitt, and Arthur G. Palmer III

Supplementary Table SI					
Isoform	Mutation in	$\mathbf{I}_{\mathbf{Na}}$	Voltage	Kinetics of Slow	Residue in
	CID		Inactivation	Inactivation	Na _v 1.2 CTD
	F1808L	persistent	– shift	\leftrightarrow^1	F1798
$Na_V 1.1$	D1866Y	persistent	+ shift	\leftrightarrow	D1856
	M1852T	decreased ²		\leftrightarrow	M1842
	V1777M	persistent	– shift		V1781
	E1784K	persistent	– shift	\leftrightarrow	E1788
	D1790G	\leftrightarrow	 shift with 	\leftrightarrow	D1794
			β subunit		
$Na_V 1.5$	Y1795insD	decreased,	\leftrightarrow^3	\leftrightarrow^4	Y1799
		persistent			
	Y1795C	persistent	\leftrightarrow	\downarrow	Y1799
	Y1795H	decreased,	– shift	1	Y1799
		persistent			
	$W1798E^{5}$	persistent	– shift		W1802
	L1825P	decreased,	– shift	\downarrow	L1829
		persistent			
	R1826H	persistent		\leftrightarrow^6	L1830
	I1853E ⁵	persistent	– shift		I1857

Correspondence between isoforms was obtained through sequence alignment of Na_V1 C-terminal Domains, performed with CLUSTALW (1), with sequences of human Na_v1 channels (2) retrieved from NLM-NCBI. The references for the data above are as follows F1808L (3), D1866Y (4), M1852T (5), V1777M (6), E1784K (7,8), D1790G (9,10), Y1795insD (11,12), Y1795C/H (13,14), W1798E (13,14), L1825P (15), R1826H (16), I1853E (13,14). ¹F1808 was observed to have a larger proportion of channels exhibiting slow inactivation (5). ²Lower relative expression is implicated as the cause of decreased current (5). ³There is conflicting data on the voltage dependence of inactivation (11,12). ⁴Kinetics of slow inactivation are only slightly increased over wild-type (11), with the predominant effect being on fast-inactivation (12). ⁵W1798E and I1853E are synthetic mutants created to probe the helix I – IV interface (13,14). ⁶The predominant effect for R1826H appears to be on fast inactivation (16).

Figure S1. Superposition of Na_v1.2 (1777-1882) CTD structural ensemble. The N-terminal region (residues 1777-1789) is colored red, the core domain (residues 1790-1868) is colored black, and the C-terminal region (residues 1869-1882) is colored blue. (left) The ordered core residues 1790-1868 are superposed; the N- and C-terminal regions are disordered. (right) The residues 1870-1876 are superposed and are shown as a backbone ribbon to more clearly illustrate helix V. The N-terminal region is disordered and the core domain does not have a fixed orientation relative to helix V.

Figure S2. Calcium titration of Na_V1.2 and Na_V1.5. For Na_V1.2 representative residues L1790 (panel A) and L1830 (panel B) are shown. For Na_V1.5 residues L1786 (panel C) and R1826 (panel D) are shown. Plots show Ca²⁺ concentration versus change of the ¹H (closed symbols) and ¹⁵N (open symbols) chemical shifts. Fitting of dissociation constants was performed globally with 103 and 83 residues, for Na_V1.2 and Na_V1.5 respectively, using Mathematica. Globally fitted dissociation rate constants are 1.65 ± 0.03 mM and 3.28 ± 0.13 mM for Na_V1.2 and Na_V1.5 respectively.

Figure S3. Calcium-induced shift perturbations for (red) $Na_V 1.2$ and (grey) N-terminal EF hand pair of calmodulin. Residue T27 in calmodulin has a shift perturbation of 2.22 ppm and G60 has a shift perturbation of 1.23 ppm. Chemical shift differences between Ca^{2+} -bound and apo calmodulin were obtained from published chemical shift assignments (17,18). (top) Structure-based sequence alignment of $Na_V 1.2$ (residues 1790-1866) and the N-terminal EF-hand pair of calmodulin (residues 4-77) (1CFD). The alignment was performed with CE (19). The helix II-III interhelical segment sequence (PPLLI) is not present in the calmodulin sequence and the indicated IN sequence in calmodulin is not present in $Na_V 1.2$. The Ca^{2+} binding regions in calmodulin and the corresponding residues in $Na_V 1.2$ are indicated by the two horizontal bars between the sequence designations. The secondary structure of $Na_V 1.2$ is indicated schematically.

References

- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) *Bioinformatics* 23, 2947-2948
- Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., Kallen, R. G., Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G., Wood, J. N., and Catterall, W. A. (2000) *Neuron* 28, 365-368
- 3. Rhodes, T. H., Vanoye, C. G., Ohmori, I., Ogiwara, I., Yamakawa, K., and George, A. L. (2005) *J. Physiol.* **569**, 433-445

- Spampanato, J., Kearney, J. A., de Haan, G., McEwen, D. P., Escayg, A., Aradi, I., MacDonald, B. T., Levin, S. I., Soltesz, I., Benna, P., Montalenti, E., Isom, L. L., Goldin, A. L., and Meisler, M. H. (2004) *J. Neurosci.* 24, 10022-10034
- 5. Rusconi, R., Scalmani, P., Cassulini, R. P., Giunti, G., Gambardella, A., Franceschetti, S., Annesi, G., Wanke, E., and Mantegazza, M. (2007) *J. Neurosci.* 27, 11037-11046
- 6. Lupoglazoff, J. M., Cheav, T., Baroudi, G., Berthet, M., Denjoy, L., Cauchemez, B., Extramiana, F., Chahine, M., and Guicheney, P. (2001) *Circ. Res.* **89**, E16-E21
- 7. Deschenes, I., Baroudi, G., Berthet, M., Barde, I., Chalvidan, T., Denjoy, I., Guicheney, P., and Chahine, M. (2000) *Cardiovascular Research* **46**, 55-65
- Makita, N., Behr, E., Shimizu, W., Horie, M., Sunami, A., Crotti, L., Schulze-Bahr, E., Fukuhara, S., Mochizuki, N., Makiyama, T., Itoh, H., Christiansen, M., McKeown, P., Miyamoto, K., Kamakura, S., Tsutsui, H., Schwartz, P. J., George, A. L., and Roden, D. M. (2008) *J. Clin. Invest.* 118, 2219-2229
- An, R. H., Wang, X. L., Kerem, B., Benhorin, J., Medina, A., Goldmit, M., and Kass, R. S. (1998) Circ. Res. 83, 141-146
- 10. Abriel, H., Wehrens, X. H. T., Benhorin, J., Kerem, B., and Kass, R. S. (2000) *Circulation* **102**, 921-925
- Bezzina, C., Veldkamp, M. W., van den Berg, M. P., Postma, A. V., Rook, M. B., Viersma, J. W., van Langen, I. M., Tan-Sindhunata, G., Bink-Boelkens, M. T. E., van der Hout, A. H., Mannens, M., and Wilde, A. A. M. (1999) *Circ. Res.* 85, 1206-1213
- Remme, C. A., Verkerk, A. O., Nuyens, D., van Ginneken, A. C. G., van Brunschot, S., Belterman, C. N. W., Wilders, R., van Roon, M. A., Tan, H. L., Wilde, A. A. M., Carmeliet, P., de Bakker, J. M. T., Veldkamp, M. W., and Bezzina, C. R. (2006) *Circulation* 114, 2584-2594
- 13. Rivolta, I., Abriel, H., Tateyama, M., Liu, H. H., Memmi, M., Vardas, P., Napolitano, C., Priori, S. G., and Kass, R. S. (2001) *J. Biol. Chem.* **276**, 30623-30630
- Glaaser, I. W., Bankston, J. R., Liu, H. J., Tateyama, M., and Kass, R. S. (2006) *J. Biol. Chem.* 281, 24015-24023
- 15. Makita, N., Horie, M., Nakamura, T., Ai, T., Sasaki, K., Yokoi, H., Sakurai, M., Sakuma, I., Otani, H., Sawa, H., and Kitabatake, A. (2002) *Circulation* **106**, 1269-1274
- 16. Ackerman, M. J., Siu, B. L., Sturner, W. Q., Tester, D. J., Valdivia, C. R., Makielski, J. C., and Towbin, J. A. (2001) *JAMA* **286**, 2264-2269
- 17. Ikura, M., Kay, L. E., and Bax, A. (1990) Biochemistry 29, 4659-4667
- 18. Tjandra, N., Kuboniwa, H., Ren, H., and Bax, A. (1995) Eur. J. Biochem. 230, 1014-1024
- 19. Shindyalov, I. N., and Bourne, P. E. (1998) *Protein Eng.* 11, 739-747