SUPPLEMENTAL INFORMATION

Figure S1. DNA ploidy level distribution upon infection of del1-1 (A), $E2Fe/DEL1^{OE}(B)$, ccs52a2 (C), SIM^{OE} (D), and wild-type Col-0 plants (E) at 24 dpi.

A, del1-1 knockout plants displayed normal symptomatology, but the amount of cells with a 2C content was 8% lower than that of wild-type controls. B, Plants overexpressing E2Fe/DEL1 on the other hand developed the regular symptoms, but here the number of cells with a 2C content was 2.5% higher than that of wild-type controls. C, The ccs52a2 knockout mutant developed wild-type symptoms and symptomatic leaf cells exhibited the typical ploidy level distribution. Nevertheless, compared with infected wild types, the number of cells with a 2C content was 7% higher. SIM-overexpressing plants had lower CDKA activity and enhanced endoreduplication but also developed symptoms similar to those of wildtype plants. The 2C level in the symptomatic leaves was 10% lower than that of the wild type and no cells with a 64C content were counted upon infection. These data indicate that the E2Fe/DEL1/CCS52A2 and the SIM pathways are not significantly involved in controlling CDK activity in symptomatic leaves. However, the modest alterations that are measured in the mutants might indicate that in a wild-type background these regulators play a role as a negative feedback system in an attempt to counter the R. fascians effect.

Gene	Forward primer(5'-3')	Reverse primer(5'-3')	Reference
ACT2	GGCTCCTCTTAACCCAAAGGC	CACACCATCACCAGAATCCAGC	Depuydt et al. (2008)
CYCD3;1	CGTTCGTAGACCACATTATCAGGAG	CGGAGATTACAGAGAGGAGGAGAC	E. Russinova (unpublished)
CYCD3;2	CGTTCGTAGACCACATTATCAGGAG	AAGTACCTCATAAACCTCGTATCAG	E. Russinova (unpublished)
CYCD3;3	TTAGCCACTGCAATAATGGTCTCTG	CTGAATGACGCATCAAACACACC	E. Russinova (unpublished)
CDKB1;1	GGTGGTGACATGTGGTCTGTTGG	CGCAGTGTGGAAACACCCGG	Boudolf et al. (2004a)
CDKA	CCTAGGATCTCATCATTACTCTACACC	CCATGTATCCTCGTACGGAGTTCC	This work
CYCA2;3	AGGCACAGATAACACAGCTG	TGAGGTAGAGAGTGTCAGATGC	Imai et al. (2006)
<i>E2Fe/DEL1</i>	GGTTAGGGTACAATGGTGAGCC	CTCTGTAGCGTTTTCTTGGGACG	Lammens et al. (2008)

Supplemental Table SI. Primers used in qRT-PCR amplification

- Boudolf V, Vlieghe K, Beemster GTS, Magyar Z, Torres Acosta JA, Maes S, Van Der Schueren E, Inzé D, De Veylder L (2004) The plantspecific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16: 2683-2692
- Depuydt S, Doležal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008) Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146: 1267-1281
- Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T
 (2006) The A-type cyclin CYCA2;3 is a key regulator of ploidy
 levels in Arabidopsis endoreduplication. Plant Cell 18: 382-396
- Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inzé D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci USA 105: 14721-14726