Research Paper

Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

SUPPLEMENTARY MATERIALS

Karine L. Massé^{1,†} Robert J. Collins^{2,†} Surinder Bhamra¹ Rachel A. Seville² Elizabeth A. Jones^{1,*}

¹Molecular Physiology Group; Department of Biological Sciences; ²The Medical School; University of Warwick; Coventry, UK

[†]The authors contributed equally to this work.

*Correspondence to: Elizabeth A. Jones; Molecular Physiology; Department of Biological Sciences; Warwick University; Coventry, CV4 7AL, United Kingdom; Tel.: +44.2476.522573 Fax : +44.2476.523701; Email: Elizabeth.Jones@ warwick.ac.uk

Original manuscript submitted: 10/13/07 Manuscript accepted: 11/12/07

This manuscript has been published online, prior to printing for Organogenesis, Volume 3, Issue 2. Definitive page numbers have not been assigned. The current citation is: Organogenesis 2007; 3(2):

http://www.landesbioscience.com/journals/organogenesis/article/4945 Once the issue is complete and page numbers have been assigned, the citation will change accordingly.

KEY WORDS

annexin 4, kidney, liver, evolution, paralog and ortholog, *Xenopus laevis*, *Xenopus tropicalis*, morpholino, organogenesis

ABBREVIATIONS

Anx	Annexin
Anx4	Annexin4
anxa4a	X. laevis Annexin4
Xt anx4	X. tropicalis anxa4
anxa4b	X. laevis annexin4 pseudoallele
sd	standard deviation

ACKNOWLEDGEMENTS

We thank N. Ahmed for *X. laevis* genomic DNA, G. Rogers for assistance with confocal images and R. Taylor and P. Jarrett for maintenance of the breeding frogs. This work was supported by the BBSRC. The authors dedicate this work to the memory of Robert Taylor.

Supplementary Figure 1. Exon / intron organization of *anxa4* genes. Exons are represented by shaded boxes and introns by a horizontal line. The total size in base pairs is given in the corresponding column. Coding sequences are underlined. Exon 2 contains the start codon (atg) and exon 13 contains the stop codon (taa). Sizes of exons 1 and 13 were determined by reference to the cDNA sequences (See Table 1 for Accession numbers). Each exon is positioned relative to the anxa4 protein domains. Figures in *italics* are generated from size estimates obtained by reference to PCR amplified bands to size markers; these introns have not been fully sequenced. *X.laevis* intron 1 was never amplified by PCR but was located in the 5'UTR using the Universal Genome Walker kit (CLONTECH laboratories, Inc). Its exact size could not be determined. Genomic sequences for the human, mouse and zebrafish *anxa4* genes were identified by BLAST on the NCBI website. The Genbank accession numbers for these sequences are: *H.sapiens*, NT_022184; *M.musculus*, NT_039353 and *D.rerio*, NW_001513125. *X.tropicalis anxa4* genomic sequences, located on the scaffold 143, were identified by BLAST on the JGI Xenopus website (http://genome.jgi-psf.org/Xentr4/Xentr4.home.html). ND, not determined.

В

Supplementary Figure 2. Identification of the X. laevis anxa4 introns.

(A) PCR amplification of introns 2 – 12 of anxa4 gene.

The putative intron boundaries of the *Xenopus laevis anxa4* gene were predicted by reference to the organization of mammalian *anxa4* genes. Primers were designed complementary to exon sequence adjacent to the putative intron boundaries (Supplementary Table 1). Each intron was amplified by PCR from *X. laevis* genomic DNA extracted from adult blood. Each amplification was optimised by gradient PCR by modifying the MgCl₂ concentration and the annealing temperature. The optimized conditions used for each intronic amplification, are indicated in Supplementary Table 1. PCR was carried out using the Taq polymerase from Invitrogen and Expand Long Template PCR polymerase (intron 7). For each primer pair, lane A shows the amplified genomic fragment, lane B shows the amplified cDNA fragment and lane C shows the no DNA input control. M, 1Kb DNA marker (Invitrogen).

(B) Southern blot analysis of the PCR amplified intronic sequences using *anxa4a* cDNA labelled with α^{32} P-dGTP. For each primer pair, lane A shows the amplified genomic fragment, lane B shows the amplified cDNA fragment and lane C shows the no DNA input control.

Intron		Sequence at exon-intron junction					
		5' splice donor		3' splice acceptor	interrupted		
	Xl	ATG GCA GCA	gt aagtataaacctttcctgttctat ag	CTC GGA ACT AAG			
	Xt	ATG GCA ACA	gt aagtatgaaccttttctgttctct ag	CTA GGA ACT AAG			
2	Hs	ATG GCC ATG	gt aagttgtgaaattcttgtgtgctc ag	GCA ACC AAA GGA			
	Mm	ATG	gt gagtgcctcgccttctgtgccttc ag	GAA GCC AAA GGA			
	Dr	ATG GCA GCG	gt aagtgaaataactttttttactgt ag	TTG GGA AAC CGT			
	Xl	ATG AAA GGA GCA G	gt gagtactagtacccccttgtttct ag	GC ACC GAT GAA	Gly-33		
3	Xt	ATG AAA GGA GCA G	gt gagtactgatatgtgcccgtttct ag	GC ACC GAT GAA	Gly-33		
	Hs	ATG AAA GGG CTC G	gt atgtgtcctgctccttcttccccca g	GC ACC GAT GAA	Gly-33		
	Mm	ATG AAA GGC CTC G	gt atgtacctttctcatcttgtctcc ag	GT ACT GAT GAA	Gly-30		
	Dr	ATG AAA GGA GCA G	gt gagagagaccataagctacttttc ag	GT ACC AAC GAG	Gly-33		
	Xl	ACT GTT GGA AAA	gt aagtcaagccaaattatcattttt ag	GAT CTT GAT GAT			
	Xt	ACT ATT GGA AAA	gt aagtcaaaccaagttcttattttt ag	GAT CTG GAG GAT			
4	Hs	ACC ATC GGC AGG	gt aggccacagtctttcttgcattgc ag	GAC TTG ATA GAC			
	Mm	ACC ATT GGC AGG	gt agggcccagtctctcgtttgttgc ag	GAC CTG ATT GAG			
	Dr	AGC GTG GGA AAG	Gtaaaacgtaacacaaacgctctttcag	GAA TTG ATG GAC			
	Xl	AAA GCC ATG AAG	gt gggtgttctgaggctatggttttt ag	GGT GCA GGG ACA			
	Xt	AAA GCC ATG AAG	gt gggtgttctgaagtttgttttttc ag	GGT GCA GGG ACA			
5	Hs	AGG GCC ATG AAG	gtctgtgctcttccggtttcttgtttag	GGA GCC GGC ACT			
	Mm	AGG GCC ATG AAG	gt ctgtggtcccctgccctcacattt ag	GGA GCT GGC ACG			
	Dr	AAC GCC ATC AAG	gt tagtgaggatagtattttgtgctc ag	GGA GCA GGG ACG			
	Xl	АСС ТАС ААА АТА А	gt aagtattataaatttctgctttgc ag	AA TAT GGT AAA	Lys-133		
	Xt	ACC TAC AGA ATA A	gt aagtagaaaaagtttttgcattac ag	AA TAT GGT AAA	Lys-133		
6	Hs	ACC TAC CAG CAG C	gt acgtgacatccgcactctcttgct ag	AA TAT GGA CGG	Gln-133		
	Mm	ACA TAC CAG CAG C	gt aagtagcagccccaattttttggt ag	AA TAT GGA AGG	Gln-131		
	Dr	GCT TAC AAG AAA G	gt gcatgctagttacctcattatctc ag	AA CAT GAC AAG	Glu-133		
	Xl	TCT TTG GCT GCT	gt aagtaccacaacttgttcatttgc ag	GGT GGG AGA GAC			
	Xt	TCT TTG GCT GCT	gt aagtaccacaacgcattcctttgc ag	GGT GGG AGA GAC			
7	Hs	TCT CTG TCA GCT	gt gagtgactgctttttctcatcctc ag	GGT GGG AGG GAT			
	Мm	TTC CTG TCG GCG	gt gcgtggcttcctccatcttcccac ag	GCT GGC AGG GAT			
	Dr	TCA TTG CTC ACG	gtaaataaacaaattgctttgtttacag	GCT GGG CGT GAC			
	Xl	CAA GAT GCC AAT	gtaagtcagtctatcactttcttctcag	GAC CTA TAT GAA			
0	Xt	CAG GAT GCC AAT	gtaagtcagtctattactttcttcccag	GAA CTA TAT GAA			
8	Hs	CAG GAT GCC CAG	gt tggtagaactgcttgtttggcttc ag	GAC CTG TAT GAG			
	Mm	CAG GAC GCC CAG	gt ttgtggaccgcattgtttgtcatc ag	GAA CTG TAT GAG			
	Dr	CAG GAT GCA AAG	gt gaggattttgacttatgctttatc ag	GAC ATC TAT GAG	11 1 2 1 0		
	Xl	CAC TTA CTG AAA G	gtgagealglgagagetttttttteteag	TT TTT GAA GAG	Val-210		
0	Xt	CAC TTG CTG AAG G	gtgagettateteeggttttatteteag	TT TTT GAT GAA	Val-210		
9	HS	CAC CTG TTG CAT G	gtaaggeaettaetgttattgtetgeag	TG TIT GAT GAA	Val-210		
	MM Du	CCC CTT CTC CAC G	gtgggtagecactim.gttattggttatag	TG TTT GAT GAA	Val-208		
	Dr		Gtaadatatataaa totttacettacaa		Val-210		
	Al V_{4}	CTT TTG GCA ATC G	gt aagtatgtcaggtetttgeettge ag		Val-242		
10	Al Uc	CTC CTC CCT ATA C	gtagtagtagtagg		Val-242		
10	115 Mm	CTG TTG GCT ATA G	gtaagetggtagggtetttetetgatag		Val 240		
	Dr.	TTT CTG GCA ATA G	gtaagetygtgageegtttteteatag	TG ANG IGC AIG	Val 240		
			gt cagegttagtgegtttgeettteag	GGT CTG GGG ACA	v a1-2-42		
	Al Vt		gt gagegeetetgeettetgtgtegeag				
11	Λι He	AAA TCG ATG AAG	gtaaatggcettatgttttetteettag	GGC TTG GGC ACC			
	115 Mm	AAA TCC ATG AAG		GGC TTA GGC ACT			
	Dr.	AAG TCA ATG AAG	gtacacaaaatcac atatcatttcttag	GGT TTA GGG ACT			
12	XI	TCA TTT ATT AAG	gtgagagaagaatt tttgttttccgcag	GGT GAC TGC TCG			
	Xt Xt	TCC TTT ATT AAG	gtaagagaggaattttttgtttctgcag	GGT GAC TGC TCT			
	Λι Ης	TCG TTC ATC AAG	gtaggtcacagcag teestategaacag	GGT GAC ACA TCT			
	Mm	TCT TTC ATC AAG	gtaggaacatcatc	GGT GAC ACT TCC			
	Dr	TCC TTT ATA AAG	gtgagacattacacttgtctttttctag	GGC GAC ACG TCG			
			5 , , , , , , , , , , , , , , , , , , ,				

Supplementary Figure 3: Exon / intron splice junctions of *anxa4* gene sequences.

Each intronic amplification was ligated into pGEMt-easy as recommended by the manufacturer (Promega, UK) and confirmed as *anxa4* genomic sequences by in-house sequencing. Intronic boundaries were identified by alignment between the genomic and cDNA sequences and according to the intron/exon boundary consensus sequences (Breathnach and Chambon, 1981). Sequences at the exon/intron boundaries from different species were compared by alignment. Shading represents conservation between species at this base in two or more of the presented intronic sequences. Intronic boundaries **gt**...**ag** are shown in bold. Xl, *Xenopus laevis*; Xt, *Xenopus tropicalis*; Hs, *Homo sapiens*; Mm, *Mus musculus*; Dr. *Danio rerio*.

Breathnach, R. and Chambon, P. Organization and expression of eucaryotic split genes coding for proteins. *Annu Rev Biochem* 1981; 50:349-83.

Intron	Sequence	Optimum	Optimum	Cycles	
Intron	Sequence	[MgCl ₂]	Temperature (°C)	Cycles	
2	U-CAGCCGACATCTGCTTAGAA	2mM	60	30	This work
	D-CCTTTCATGGCGTTCCTCAG	3111111			
3	U-CTGAGGAACGCCATGAAAGG	7.5mM	60	30	This work
	D-GCAATGACGTCAATGAC	7. Jiiivi			
4	U-GTCATTGACGTCATTGC	5mM	60	30	This work
	D-GTTCCTCCACATCATAGAGA	JIIIVI			
5	U-CCGAACTGACAGGGAACTTT	3mM	60	30	This work
	D-TCTCCTCTGCGCTGCGAGAT	JIIIVI			
6	U-TCTCGCAGCGCAGAGGAGAT	5mM	60	30	This work
	D-CTCTCTGGAACATGAAAGAC	JIIIVI			
7	U-GGAGGACGATATTTGCTCAG	1.5mM	60	30	This work
	D-TCATTCACGGTGCTGCTCTG	1. JIIIVI			Seville et al. (2002)
9	U-CAGAGCAGCACCGTGAATGA	4mM	60	30	This work
	D-CCACTTCTTCTCACCGGCTT	411111			
10	U-AAGCCGGTGAGAAGAAGTGG	2mM	60	20	This work
	D-GTGTCCCGACATTTCAGATT	JIIIVI	00	30	T HIS WOLK
11	U-AGATCTTGAGGCCAGTATAA	5mM	60	30	This work
	D-CAATCGTTCTGCAAAGTAGG	JIIIVI			
12	U-AAGAGCAGGCCAGCCTACTT	1.5mM	60	30	This work
	D-TCTTGAACTCGCAGCGGATT	1. 311111			
13	U-TCCGCTGCGAGTTCAAGAAG	3mM	60	30	This work
	D-GAGCACCTTCCTGTAATCTC	5111111			

Supplementary Table 1. Primers designed to amplify up X. laevis anxa4 introns