Supporting Information

Oh et al. 10.1073/pnas.0813200106

SI Materials and Methods

Cell Counting and Viability Test. A coulter particle counter (Beckman Coulter; Z-1 model) was used to count the hMSCs for maintenance and experimental plating densities. To measure live cell elongation at various time points, a fluorescein diacetate (FDA; Sigma) staining was conducted. Cells were plated onto the specimen at a density of 1×10^4 cells per mL. At 2 and 24 h after plating, the cells on the substrate of the specimen were washed by $1 \times$ PBS, stained by FDA in PBS ($10 \ \mu L/10 \ mL$), incubated for ≈ 30 s, and washed once more.

Immunofluorescence of Fibronectin. After 2 h of incubation in cell culture media or control H_2O with out the presence of cells, Ti and TiO₂ nanotube substrates were fixed in 4% paraformaldehyde in 1× PBS for 15 min at room temperature. Once fixed, substrates were washed twice with 1× wash buffer (1× PBS containing 0.05% Tween-20). Then the samples were incubated for 1 h at room temperature in 5% gelatin (Sigma, from fish $\frac{1}{1} \times PBS$ followed by the addition of primary anti-BSA antibody (1:100, 2A3E6, Santa Cruz Biotechnology)/anti-bovine serum fibronectin antibody (1:1,000; Primary antibody for staining fibronectin was R457 rabbit polyclonal anti-rat antiserum against the amino-terminal 70-kDa fragment of fibronectin). The samples were incubated overnight at 4 °C. After incubation, substrates were washed three times for 5 min each wash with $1 \times$ wash buffer. Goat anti-mouse IgG-FITC (1:1,000, Santa Cruz Biotechnology) and goat anti-rabbit IgG Alexa Fluor 594 (1:1,000, Invitrogen) in $1 \times PBS$ was added for double staining and the substrates were incubated again for 1 h at room temperature. After incubation, substrates were washed 3 times for 5 min each wash with $1 \times$ wash buffer. The samples were then inverted onto coverslips, mounted, visualized, and photographed by an epifluorescence microscope (DM IRB, Leica Microsystems).

Fig. S1. hMSC behavior on Ti and nanotube substrates. (a) Cell number vs. incubation time for various TiO₂ nanotube diameters. (b) Cell elongation vs. TiO₂ nanotube diameter at 2 and 24 h. (c) Schematic illustration of the overall trend of nano cue effect on hMSC control, for example, after 24 h culture. *, Significant statistical difference between Ti vs. TiO₂ nanotubes (P < 0.01); **, significant difference between Ti, 30-, 50-nm nanotube vs. 100-nm nanotube (P < 0.01).

Fig. S2. Fluorescein diacetate (FDA) images of human mesenchymal stem cells (hMSCs) on flat Ti and 30-, 50-, 70-, and 100-nm diameter TiO₂ nanotube surfaces after 24 h of culture. (Scale bar, 100 μm.)

SANG SA

Bovine Fibronectin Staining

Fig. S3. Bovine fibronectin immunofluorescent staining (red) was performed on flat Ti, 30-nm, and 100-nm TiO₂ surfaces to identify the protein particles on the surface. Fibronectin particles were detected on all surfaces that were incubated in media for 2 h. No fibronectin was detected on control surfaces incubated for 2 h in H₂O. (Scale bar, 20 μ m.)

DNAS

<