Supporting Information

Ding et al. 10.1073/pnas.0811946106

SI Text

NAS PNAS

Screw Dislocation Representation. Central to our discussion is a simple theorem, establishing the relationship between the arbitrary nanotube (n, m) and its equivalent representation as a *zigzag* tube with a screw *dislocation* along its axis:

 $\forall (n, m)$, even $m \Leftrightarrow (n + m/2, 0)$ with dislocation of Burgers vector $\mathbf{b}_{\gamma} = m(-\frac{1}{2}, 1)$.

 $\forall (n, m)$, odd $m \Leftrightarrow (n + m/2 + \frac{1}{2}, 0)$ with $\mathbf{b}_{\gamma} = m(-\frac{1}{2}, 1)$ and an edge component $b_{\perp} = -\frac{1}{2}$.

Its validity can be seen by inspection of Fig. S1A. In the

extreme case of an armchair tube, an example is shown in Fig. S1B.

Configurations for Energy Calculations. To determine the kink formation energy, the self-consistent DFT calculations were performed. While some details are discussed in *Methods*, calculations involve rather specific atomic configurations, which are shown here in Figs. S2 and S3. Results of the additional numerical tests, also discussed in *Methods*, are presented here in Table S1.

Fig. S1. (*A*) It is common to specify any nanotube by mapping its circumference vector onto a plane of hexagons, with the basis a_1 and a_2 , so that the circumference vector is $(na_1 + ma_2)$, or can be written as (n, m); chiral angle $0 < \theta < 30^\circ$ is measured between the zigzag motif and the circumference, and, for the example shown here, the (8, 3) tube has a $\theta = 15.3^\circ$. Alternatively, any single-walled carbon nanotube (n, m) can be viewed as a zigzag one, $(n + \frac{1}{2}m, 0)$ for an even m or $(n + \frac{1}{2}m + \frac{1}{2}, 0)$ for an odd m, with a screw dislocation, $b_{\gamma} = m(-\frac{1}{2}, 1)$, and a small edge component $b_{\perp} = (-\frac{1}{2}, 0)$ for an odd m. The screw dislocation, $b_{\gamma} = m(-\frac{1}{2}, 1)$, corresponds to m kinks on the zigzag edge. (*B*) An (m, m) armchair tube can also formally be viewed as a zigzag (short blue zigzag segments) with m kinks (red); the example shown of a (9, 9) tube displays 9 sites where the new carbon can be added easily.

S A Z d

Fig. S2. Relaxed armchair and zigzag nanoribbon on an Ni (1, 1, 1) flat surface. (*Left*) Armchair strip/ribbon on an Ni (111) surface. (*Right*) Zigzag strip/ribbon on an Ni (111) surface.

PNAS

Fig. S3. Few C atoms (marked with white dots) are swapped with metal atoms (circled white) across the graphene strip/ribbon (*Top*), to create a quartet of kinks on the catalyst-graphene interface (*bottom*). *Left* shows the unit cell of an armchair ribbon located between the 2 metal steps and *Right* shows a unit cell for a zigzag case.

PNAS

<

Table S1. Calculations for the C-contact with fully relaxed double layer of Ni

PNAS PNAS

Contact	Energy calculated with gamma point (eV)	Energy calculated with 2x2x1 k-points (eV)
ZZ edge with kinks	-845.224	-845.288
ZZ edge without kinks	-847.949	-847.845
Nucleation barrier on ZZ edge	1.36	1.28
AC edge without kinks	-901.697	
AC edge with kinks	-901.635	
Nucleation barrier on AC edge	0.031	