Supporting Information

Ding *et al.* **10.1073/pnas.0811946106**

SI Text

PNAS PNAS

Screw Dislocation Representation. Central to our discussion is a simple theorem, establishing the relationship between the arbitrary nanotube (n, m) and its equivalent representation as a *zigzag* tube with a screw *dislocation* along its axis:

 $\forall (n, m)$, even $m \Leftrightarrow (n + m/2, 0)$ with dislocation of Burgers vector **b**_{γ} = *m*(- $\frac{1}{2}$, 1).

 $\forall (n, m)$, odd $m \Leftrightarrow (n + m/2 + \frac{1}{2}, 0)$ with $\mathbf{b}_{\gamma} = m(-\frac{1}{2}, 1)$ and an edge component $b_{\perp} = -\frac{1}{2}$.

Its validity can be seen by inspection of [Fig. S1](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=SF1)*A*. In the

extreme case of an armchair tube, an example is shown in [Fig.](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=SF1) [S1](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=SF1)*B*.

Configurations for Energy Calculations. To determine the kink formation energy, the self-consistent DFT calculations were performed. While some details are discussed in *Methods*, calculations involve rather specific atomic configurations, which are shown here in [Figs. S2](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=SF2) and [S3.](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=SF3) Results of the additional numerical tests, also discussed in *Methods*, are presented here in [Table S1.](http://www.pnas.org/cgi/data/0811946106/DCSupplemental/Supplemental_PDF#nameddest=ST1)

Fig. S1. (*A*) It is common to specify any nanotube by mapping its circumference vector onto a plane of hexagons, with the basis *a*¹ and *a*2, so that the circumference vector is (na₁ + ma₂), or can be written as (n, m); chiral angle 0 < θ < 30° is measured between the zigzag motif and the circumference, and, for the example shown here, the (8, 3) tube has a $\theta = 15.3^{\circ}$. Alternatively, any single-walled carbon nanotube (n, m) can be viewed as a zigzag one, ($n + \frac{1}{2}$ m, 0) for an even m or ($n + \frac{1}{2}$, 0) for an odd m, with a screw dislocation, $b_\gamma = m(-\frac{1}{2},1)$, and a small edge component $b_\perp = (-\frac{1}{2},0)$ for an odd m . The screw dislocation, b_γ = m(–½, 1), corresponds to m kinks on the zigzag edge. (*B*) An (*m, m*) armchair tube can also formally be viewed as a zigzag (short blue zigzag segments) with m kinks (red); the example shown of a (9, 9) tube displays 9 sites where the new carbon can be added easily.

SVNAS

Fig. S2. Relaxed armchair and zigzag nanoribbon on an Ni (1, 1, 1) flat surface. (*Left*) Armchair strip/ribbon on an Ni (111) surface. (*Right*) Zigzag strip/ribbon on an Ni (111) surface.

PNAS

S

Fig. S3. Few C atoms (marked with white dots) are swapped with metal atoms (circled white) across the graphene strip/ribbon (*Top*), to create a quartet of kinks on the catalyst-graphene interface (*bottom*). *Left* shows the unit cell of an armchair ribbon located between the 2 metal steps and *Right* shows a unit cell for a zigzag case.

PNAS

 $\overline{\mathbf{v}}$ ₹

Table S1. Calculations for the C-contact with fully relaxed double layer of Ni

PNAS PNAS

