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SI Text

The MinOver+* algorithm. From an abstract viewpoint, the problem
to be solved consists in finding the largest value p > 0 for which
a nonzero flux vector s = {s; = 0} exists such that
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where i labels reactions and ranges from 1 to N, u labels reagents
and runs from 1 to P, whereas {a!}, {b!'} denote output and
input stoichiometric coefficients, respectively. The general strat-
egy used by MinOver™ consists in (/) finding a suitable flux
configuration for some value p < p*, and (ii) increasing p — p
+ Ap and using the solution just obtained as the initial guess for
locating a new solution. Note that Eq. s1 is trivially verified by
all flux vectors for p = 0.

Given the input/output matrix and a fixed value p = p, a flux
vector satisfying Eq. s1 is found by iterating the following scheme
(see ref. 1 for a proof of convergence and an estimate of
convergence times):

1. Initialize the flux vector s to a random vector s # 0.

2. Evaluate the constraints.
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3. Find po = arg min, c*, i.e., the value of u such that c* is
minimum.
4. (a) If ¢l = 0 then s © s a solution. Increase p by Ap and go
to 2.
(b) If c¢fy < 0 then update the fluxes as follows:
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59 — sV = max{0, s + n(b* — pat)}, Vi=1,...,N
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and go to 2.

The factor nin Eq. 3 is a real number between 0 and 1 and may
speed up the convergence when the algorithm works close to p*.

We define the unsatisfiable region as the one where the
algorithm can’t find a solution within a certain maximum
computational time. p* can then be approximated (within Ap) by
the higher value for which a solution has been found. Alterna-
tively, it can be computed by extrapolation from a convergence-
time versus p plot.

Uniform Sampling. An important question to address is whether
the above algorithm samples the solution space uniformly, i.e.,
whether it is ergodic. Indeed, even if the solution space of this
problem is flat and there aren’t local minima or energy barriers
to overcome, is still possible that the algorithm has some intrinsic
bias that limits its evolution on a certain subspace. Unfortu-
nately, there is no general way to test the ergodicity of an
algorithm. We show here that sampling is achieved for a 3-di-
mensional problem (similar low-dimensional tests confirm these
results).

We consider the system of n = 3 fluxes, with the sole
constraint: ¢ = s1 + s — ;3 = 0. The constraint corresponds to
a metabolite produced by reactions 1 and 2 and consumed by
reaction 3. Running the algorithm 100 times starting from
different initial random fluxes, one finds that the maximum
growth rate is p = 0.999 with ¢ = 0.000. In Fig. S1, we show the
100 final solutions scaled by the factor § = 57 + 53 + 53 to project
the solutions on the unitary sphere. This solution space is clearly
sampled uniformly.
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Fig. S1.  Each point on the unitary sphere corresponds to a flux vector satisfying s1 + s, — s3 = 0.
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