Supporting Information

Awano et al. 10.1073/pnas.0812297106

SI Methods

Histopathology and Immunohistopathology. For the stringency level 1 diagnosis of degenerative myelopathy (DM), thoracic spinal cords from dogs with clinical signs of DM were dissected and immersion fixed in neutral-buffered 10% formalin or in buffered 3.5% paraformaldehyde with 0.5% glutaraldehyde, paraffin embedded, and cut into 4- μ m thick sections. These sections were stained with hematoxylin and eosin (H&E) and with luxol fast blue-periodic acid Schiff to detect myelin loss. Immunostaining for glial fibrillary acid protein to detect gliosis was performed on dewaxed, paraffin-embedded tissues by using rabbit anti-GFAP antibody (Dako Z0334; Dako). Antibody binding was done as described below, by using Nova Red chromogen (Vectorlabs). The diagnosis of DM was confirmed by demonstration of axonal degeneration, myelin loss, and gliosis.

To detect SOD1-containing cytoplasmic inclusions, spinal cord paraffin sections from DM-affected dogs and controls of similar age were prepared as previously described and kept overnight at 43 °C, then hydrated and steamed at 95 °C for 20 min in pH 6.0 citrate buffer. After the slides were cooled at room temperature for 20 min and rinsed, they were placed in Tris buffer for at least 5 min before immunostaining. Next, the slides were treated with 3% H₂0₂ for 15 min, washed in buffer, submerged in Protein Blocking solution (Dako) for 5 min, and drained. They were then incubated in rabbit anti-SOD1 antibody, (Stressgen SOD100) at a 1:800 dilution for 60 min with

 Kimura J (2001) Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice, ed Kimura J (Oxford Univ Press, New York), pp 339–369. nonimmune rabbit IgG (Sigma) at a 1:1,000 dilution in place of the anti-SOD1 antibody. Antibody binding was visualized with the Rabbit Envision+ kit (Dako). The chromogen was Nova Red. Slides were then counterstained in Mayer's Hematoxylin (Newcomer's Supply) for 1 min, dehydrated, and coverslipped. Each immunohistochemical specimen was run with and without primary antibody to verify the specificity of staining. Muscle specimens were immersion-fixed in 10% neutral buffered formalin and evaluated in paraffin sections. Peripheral nerve specimens were immersion-fixed in 2.5% glutaraldehyde in 0.1M phosphate buffer, postfixed in 1% aqueous osmium tetroxide, and processed to araldite resin blocks; 1- μ m thick sections were cut and stained with toluidine blue before light microscopic examination.

Electrodiagnostic Testing. Electrodiagnostic testing in some DMaffected dogs consisted of EMG and motor nerve conduction velocity studies. Dogs were premedicated with midazolam HCl (0.025 mg/kg s.c.) and hydromorphone (0.125 mg/kg s.c.). Anesthesia was induced with propofol (10 mg/kg i.v.) and maintained with 1.5–2.0% isoflurane. Electrophysiologic assessments were performed on the left side. Concentric needle EMG recorded intramuscular potentials were displayed in real time on a Cadwell Central Lab electrodiagnostic instrument. Spontaneous activity was identified according to the established parameters described by Kimura (1). Motor nerve conduction studies of the tibial or ulnar nerves were performed as previously described (2).

 Walker TL, Redding RW, Braund KG (1979) Motor nerve conduction velocity and latency in the dog. Am J Vet Res 40:1433–1439.

Fig. S1. Ischiatic/tibial M wave recordings, after stimulation at the hock, stifle, and hip, from a DM-affected 10-year-old Boxer during early and late disease stages. (*A*) At an early disease stage the motor nerve conduction velocities between proximal and distal stimulation sites were within or above the normal mean values for the tibial nerve ($66.9 \pm 2.4 \text{ m/s}$) (2), although the M wave amplitudes (6.0, 3.1 and 0.8 mV) were below the normal mean values of $22.2 \pm 2.6 \text{ mV}$ (2), and there was mild temporal dispersion. (*B*) M wave recordings at a late disease stage showed further decreases in amplitude (1.2, 0.6, and 0.4 mV) with marked temporal dispersion. Also, the proximal and distal motor nerve conduction velocities were decreased when compared with the normal reference range. These findings provide evidence of motor axonopathy and demyelination in the late disease stage of degenerative myelopathy.

Dog (wild-type allele)	F٦	7QF	GS	G.	- P	vv٦	750	ЗT	IТ	GL'	ГE	3E	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Rat	FI	QI	CA S	5GI	E P	vv٦	750	ΞQ	IT	GL'	TEC	3E	HG	FHV	νнς	QΥ	GDI	T	QGC	TT.	'AG
Guinea pig	FF	QI	CAS	5GI	EP	vv٦	750	GQ	IТ	GL'	ГE	3E	HG	FHV	νнç	QΥ	GDI	T	QGC	TT.	'AG
Mouse	FF	QI	CAS	5GI	EP	vvi	S	GQ	IТ	GL	гес	g	HG	FHV	νнç	QΥ	GDI	T	QGC	TS	AG
Rabbit	FI	QI	(GJ	۲G	- P	vv٦	7K	GR	IT	GL'	TEC	L	HE	FHV	νнç	QΓ	GDI	NR	QGC	TS	AG
Rhesus monkey	FF	QI	CE S		3P	٧ĸ١	7W	GS	IT	GL'	TEC	L	HG	FHV	νнς	QΓ	GDI	T	QGC	TS	AG
Common gibbon	FI	QI	CE S	5NO	3P	٧ĸ١	7Y	GR	IТ	GL'	TEC	L	HG	FHV	νнς	QΓ	GDI	T	QGC	TS	AG
Red deer	IF	RFE	CAR	(<mark>G</mark> I	ТR	vv٦	7T	3S	IT	GL'	TEC	D	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Cattle	IF	IFE	CAR	(<mark>G</mark> I	T	vv٦	7T	3S	IТ	GL'	TEC	D	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Sheep	IF	RFE	CAR	(<mark>G</mark> I	Эĸ	vv٦	7T	GS	IT	GL'	TEC	D	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Crab-eating macaque	FF	QI	CE S		3P	٧ĸ١	7W	GS	IT	GL'	TEC	L	HG	YHY	νнς	QΓ	GDI	T	QGC	TS	AG
Domestic yak	IF	IFE	CAR	(<mark>G</mark> I	ЭT	vv٦	7T	gs	IТ	GL'	ГE	D	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Goat	IF	IFE	CAR	(<mark>G</mark> I	ЭK	vv٦	7T	3S	IT	GL'	ГE	D	HG	FHV	νнς	QΓ	GDI	T	QGC	TS	AG
Pig	YF	ΈI	KG	JE	KТ	۷L	7T	ЗT	IK	GL	AEC	D	HG	FHV	νнς	QΓ	GDI	T	QGC	TS	AG
White-tufted-ear marmoset	FF	QI	CE S	SN(3P	٧ĸ٦	7W (3S	IT	GL	AEC	L	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Brown capuchin	FI	QI	CE S		3P	٧ĸ٦	7W	3S	IT	GL	AEC	L	HG	FHV	νнç	QΓ	GDI	T	QGC	TS	AG
Gray short-tailed opossum	FI	QI	ζQ٦	7 <mark>G</mark> I	EP	VEI	S	3S	IK	GL	AEC	D	HG	FHV	7HI	SF	GDI	T	QGC	TS	AG
Man	FI	QI	CE S		3P	٧ĸ٦	7W	gs	IK	GL'	ГE	L	HG	FHV	7HI	SF	GDI	VT/	AGC	TS	AG
Orangutan	FI	QI	EF	RNO	3P	٧ĸ٦	7W (GS	ΙE	GL'	ГE	L	HG	FHV	7HI	SF	GDI	1TV	VGC	TS	AG
Horse	FI	2 <mark>0</mark> 0	QQE	E <mark>G</mark> (3P	vvı	-K	GF	ΙE	GL'	г <mark>к</mark> с	D	HG	FHV	7HI	SF	GDI	T	QGC	TT.	'AG
Dog (mutant allele)	F٦	7QF	GS	G.	- P	vv٦	750	ЗT	IT	GL'	г <mark>к</mark> с	GE:	HG	FHV	ЛH	QΓ	GDI	T	QGC	TS	AG

Fig. S2. Aligned predicted amino acid sequences for SOD1 from 20 mammalian species showing conservation of glutamic acid (in red) at the equivalent of canine position 40 in 19 species, and substitution by lysine (also in red) in the horse and in the mutant canine allele.

PNAS PNAS

Movie S1. Dogs with degenerative myelopathy from early to latter disease stages: asymmetric spastic paraparesis and general proprioceptive ataxia; nonambulatory paraparesis to paraplegia; paraplegia to thoracic limb weakness; flaccid paralysis and hyporeflexia; and, flaccid tetraplegia. These clips demonstrate disease onset with upper motor neuron signs in the pelvic limbs that progresses to generalized lower motor neuron signs. The dog with the flaccid tetraplegia also had clinical signs of dysphagia and motor deficits in the tongue.

Movie S1 (WMV)

Table S1. Intracytoplasmic staining characteristics produced by anti-SOD1 antibodies in spinal cord sections from aged DM-af	fected
and normal dogs	

Breed Age, yr		Genotype	Staining characteristic	Disease status		
Boxer 10		A/A	Well-defined dark-staining clumps	DM-affected		
Boxer	10	A/A	Well-defined dark-staining clumps	DM-affected		
Boxer	8	A/A	Well-defined dark-staining clumps	DM-affected		
Chesapeake Bay retriever	9	A/A	Well-defined dark-staining clumps	DM-affected		
Pembroke Welsh corgi	13	A/A	Well-defined dark-staining clumps	DM-affected		
Pembroke Welsh corgi	13	A/A	Well-defined dark-staining clumps	DM-affected		
Rhodesian ridgeback	8	A/A	Well-defined dark-staining clumps	DM-affected		
German Shepherd dog	8	A/G	Well-defined light-staining clumps	Asymptomatic		
Tibetan terrier	14	A/G	Poorly defined light staining regions	Asymptomatic		
Rhodesian ridgeback	15	A/G	No staining or diffuse light staining	Asymptomatic		
Australian Shepherd	8	A/G	No staining or diffuse light staining	Asymptomatic		
Boxer	8	A/G	No staining or diffuse light staining	Asymptomatic		
Mixed breed	13	G/G	No staining or diffuse light staining	Asymptomatic		
Rhodesian ridgeback	13	G/G	No staining or diffuse light staining	Asymptomatic		
Labrador retriever	9	G/G	No staining or diffuse light staining	Asymptomatic		
Labrador retriever	13	G/G	No staining or diffuse light staining	Asymptomatic		
Labrador retriever	13	G/G	No staining or diffuse light staining	Asymptomatic		

Genotype at SOD1:c.118G>A.

PNAS PNAS

Table S2. Primers for PCR and RT-PCR amplification

PNAS PNAS

Target	Forward primer/reverse primer	Amplicon size, bp	Template	Method
SOD1 exon 1	GCTGCCCTCGGACTGCTG/TTGAGGATTTTCAATGTTTAGGAGTAGC	196	RNA	RT-PCR
SOD1 exon 2	AAGTCCATGTTCCTTCCACTTTCTTGTG/	294	DNA	PCR
	TTGAGGATTTTCAATGTTTAGGAGTAGC			
SOD1 exon 3	GTATTTGAGGTTTTAGCAATGGC/GCAAGGAATACACCCGTACTGA	252	DNA	PCR
SOD1 exon 4	CTCACAAACTAGCCTGAATCAGTCC/	307	DNA	PCR
	GCCCTTCCTAATCTGAACTAAAG			
SOD1 exon 5a	GCGCTAAGTTATGTTAATGTTCTT/	296	DNA	PCR
	AGTTCTCATTACAGGTACTTAAAGCAAT			
SOD1 exon 5b	AAACATTGTAACCTTAAAAGTGTAATTTG/	324	DNA	PCR
	CGTTCAAGCTCTAATGTAGGAGTATGAAG			